Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Square

Commutative squares that are pushout or pullback squares #

In this file, we translate the IsPushout and IsPullback API for the objects of the category Square C of commutative squares in a category C. We also obtain lemmas which states in this language that a pullback of a monomorphism is a monomorphism (and similarly for pushouts of epimorphisms).

@[reducible, inline]

The pullback cone attached to a commutative square.

Equations
Instances For
    @[reducible, inline]

    The pushout cocone attached to a commutative square.

    Equations
    Instances For

      The condition that a commutative square is a pullback square.

      Equations
      Instances For

        The condition that a commutative square is a pushout square.

        Equations
        Instances For

          If a commutative square sq is a pullback square, then sq.pullbackCone is limit.

          Equations
          Instances For

            If a commutative square sq is a pushout square, then sq.pushoutCocone is colimit.

            Equations
            Instances For
              theorem CategoryTheory.Square.IsPullback.of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (h : sq₁.IsPullback) (e : sq₁ sq₂) :
              sq₂.IsPullback
              theorem CategoryTheory.Square.IsPullback.iff_of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (e : sq₁ sq₂) :
              sq₁.IsPullback sq₂.IsPullback
              theorem CategoryTheory.Square.IsPushout.of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (h : sq₁.IsPushout) (e : sq₁ sq₂) :
              sq₂.IsPushout
              theorem CategoryTheory.Square.IsPushout.iff_of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (e : sq₁ sq₂) :
              sq₁.IsPushout sq₂.IsPushout
              theorem CategoryTheory.Square.IsPushout.op {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPushout) :
              sq.op.IsPullback
              theorem CategoryTheory.Square.IsPushout.unop {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square Cᵒᵖ} (h : sq.IsPushout) :
              sq.unop.IsPullback
              theorem CategoryTheory.Square.IsPullback.op {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPullback) :
              sq.op.IsPushout
              theorem CategoryTheory.Square.IsPullback.unop {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square Cᵒᵖ} (h : sq.IsPullback) :
              sq.unop.IsPushout
              theorem CategoryTheory.Square.IsPullback.flip {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPullback) :
              sq.flip.IsPullback
              theorem CategoryTheory.Square.IsPushout.flip {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPushout) :
              sq.flip.IsPushout