Documentation

Mathlib.Algebra.Lie.Weights.RootSystem

The root system associated with a Lie algebra #

We show that the roots of a finite dimensional splitting semisimple Lie algebra over a field of characteristic 0 form a root system. We achieve this by studying root chains.

Main results #

def LieAlgebra.IsKilling.chainLength {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :

The length of the α-chain through β. See chainBotCoeff_add_chainTopCoeff.

Equations
Instances For
    theorem LieAlgebra.IsKilling.chainLength_of_isZero {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsZero) :
    chainLength α β = 0
    theorem LieAlgebra.IsKilling.chainLength_nsmul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) {x : L} (hx : x rootSpace H (LieModule.chainTop (⇑α) β)) :
    theorem LieAlgebra.IsKilling.chainLength_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) {x : L} (hx : x rootSpace H (LieModule.chainTop (⇑α) β)) :
    (chainLength α β) x = coroot α, x
    theorem LieAlgebra.IsKilling.apply_coroot_eq_cast' {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    β (coroot α) = ((chainLength α β) - 2 * (LieModule.chainTopCoeff (⇑α) β))
    theorem LieAlgebra.IsKilling.rootSpace_neg_nsmul_add_chainTop_of_le {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) {n : } (hn : n chainLength α β) :
    rootSpace H (-(n α) + (LieModule.chainTop (⇑α) β))
    theorem LieAlgebra.IsKilling.rootSpace_neg_nsmul_add_chainTop_of_lt {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) {n : } (hn : chainLength α β < n) :
    rootSpace H (-(n α) + (LieModule.chainTop (⇑α) β)) =
    theorem LieAlgebra.IsKilling.chainTopCoeff_le_chainLength {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    theorem LieAlgebra.IsKilling.chainBotCoeff_add_chainTopCoeff {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    theorem LieAlgebra.IsKilling.chainTopCoeff_add_chainBotCoeff {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    theorem LieAlgebra.IsKilling.chainBotCoeff_le_chainLength {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    @[simp]
    theorem LieAlgebra.IsKilling.chainLength_neg {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    chainLength (-α) β = chainLength α β
    @[simp]
    theorem LieAlgebra.IsKilling.chainLength_zero {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (β : LieModule.Weight K (↥H) L) [Nontrivial L] :
    chainLength 0 β = 0
    theorem LieAlgebra.IsKilling.apply_coroot_eq_cast {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    β (coroot α) = ((LieModule.chainBotCoeff (⇑α) β) - (LieModule.chainTopCoeff (⇑α) β))

    If β - qα ... β ... β + rα is the α-chain through β, then β (coroot α) = q - r. In particular, it is an integer.

    theorem LieAlgebra.IsKilling.le_chainBotCoeff_of_rootSpace_ne_top {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) (n : ) (hn : rootSpace H (-n α + β) ) :
    n (LieModule.chainBotCoeff (⇑α) β)
    theorem LieAlgebra.IsKilling.rootSpace_zsmul_add_ne_bot_iff {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) (n : ) :
    rootSpace H (n α + β) n (LieModule.chainTopCoeff (⇑α) β) -n (LieModule.chainBotCoeff (⇑α) β)

    Members of the α-chain through β are the only roots of the form β - kα.

    theorem LieAlgebra.IsKilling.rootSpace_zsmul_add_ne_bot_iff_mem {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) (n : ) :
    rootSpace H (n α + β) n Finset.Icc (-(LieModule.chainBotCoeff (⇑α) β)) (LieModule.chainTopCoeff (⇑α) β)
    theorem LieAlgebra.IsKilling.chainTopCoeff_of_eq_zsmul_add {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) (β' : LieModule.Weight K (↥H) L) (n : ) (hβ' : β' = n α + β) :
    (LieModule.chainTopCoeff (⇑α) β') = (LieModule.chainTopCoeff (⇑α) β) - n
    theorem LieAlgebra.IsKilling.chainBotCoeff_of_eq_zsmul_add {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) (β' : LieModule.Weight K (↥H) L) (n : ) (hβ' : β' = n α + β) :
    (LieModule.chainBotCoeff (⇑α) β') = (LieModule.chainBotCoeff (⇑α) β) + n
    theorem LieAlgebra.IsKilling.chainLength_of_eq_zsmul_add {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β β' : LieModule.Weight K (↥H) L) (n : ) (hβ' : β' = n α + β) :
    theorem LieAlgebra.IsKilling.chainTopCoeff_zero_right {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : LieModule.Weight K (↥H) L) [Nontrivial L] (hα : α.IsNonZero) :
    theorem LieAlgebra.IsKilling.chainBotCoeff_zero_right {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : LieModule.Weight K (↥H) L) [Nontrivial L] (hα : α.IsNonZero) :
    theorem LieAlgebra.IsKilling.chainLength_zero_right {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : LieModule.Weight K (↥H) L) [Nontrivial L] (hα : α.IsNonZero) :
    chainLength α 0 = 2
    theorem LieAlgebra.IsKilling.rootSpace_two_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) :
    rootSpace H (2 α) =
    theorem LieAlgebra.IsKilling.rootSpace_one_div_two_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) :
    rootSpace H (2⁻¹ α) =
    theorem LieAlgebra.IsKilling.eq_neg_one_or_eq_zero_or_eq_one_of_eq_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) (k : K) (h : β = k α) :
    k = -1 k = 0 k = 1
    theorem LieAlgebra.IsKilling.eq_neg_or_eq_of_eq_smul {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hβ : β.IsNonZero) (k : K) (h : β = k α) :
    β = -α β = α

    ±α are the only K-multiples of a root α that are also (non-zero) roots.

    def LieAlgebra.IsKilling.reflectRoot {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) :
    LieModule.Weight K (↥H) L

    The reflection of a root along another.

    Equations
    Instances For
      theorem LieAlgebra.IsKilling.reflectRoot_isNonZero {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : LieModule.Weight K (↥H) L) (hβ : β.IsNonZero) :
      (reflectRoot α β).IsNonZero
      def LieAlgebra.IsKilling.rootSystem {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] :
      RootSystem { x : LieModule.Weight K (↥H) L // x LieSubalgebra.root } K (Module.Dual K H) H

      The root system of a finite-dimensional Lie algebra with non-degenerate Killing form over a field of characteristic zero, relative to a splitting Cartan subalgebra.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] :
        (rootSystem H).CorootForm = (killingForm K L).restrict H.toSubmodule
        @[simp]
        theorem LieAlgebra.IsKilling.rootSystem_toPerfectPairing_apply {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (f : Module.Dual K H) (x : H) :
        ((rootSystem H).toPerfectPairing f) x = f x
        @[deprecated LieAlgebra.IsKilling.rootSystem_toPerfectPairing_apply (since := "2024-09-09")]
        theorem LieAlgebra.IsKilling.rootSystem_toLin_apply {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (f : Module.Dual K H) (x : H) :
        ((rootSystem H).toPerfectPairing f) x = f x

        Alias of LieAlgebra.IsKilling.rootSystem_toPerfectPairing_apply.

        @[simp]
        theorem LieAlgebra.IsKilling.rootSystem_pairing_apply {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α β : { x : LieModule.Weight K (↥H) L // x LieSubalgebra.root }) :
        (rootSystem H).pairing β α = β (coroot α)
        @[simp]
        theorem LieAlgebra.IsKilling.rootSystem_root_apply {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : { x : LieModule.Weight K (↥H) L // x LieSubalgebra.root }) :
        (rootSystem H).root α = LieModule.Weight.toLinear K (↥H) L α
        @[simp]
        theorem LieAlgebra.IsKilling.rootSystem_coroot_apply {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] (α : { x : LieModule.Weight K (↥H) L // x LieSubalgebra.root }) :
        (rootSystem H).coroot α = coroot α
        theorem LieAlgebra.IsKilling.isReduced_rootSystem {K : Type u_1} {L : Type u_2} [Field K] [CharZero K] [LieRing L] [LieAlgebra K L] [IsKilling K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] :
        (rootSystem H).IsReduced