Lemmas about the support of a finitely supported function #
theorem
MonoidAlgebra.support_mul
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
[DecidableEq G]
(a b : MonoidAlgebra k G)
:
theorem
AddMonoidAlgebra.support_mul
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Add G]
[DecidableEq G]
(a b : AddMonoidAlgebra k G)
:
theorem
MonoidAlgebra.support_single_mul_subset
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
[DecidableEq G]
(f : MonoidAlgebra k G)
(r : k)
(a : G)
:
theorem
AddMonoidAlgebra.support_single_mul_subset
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Add G]
[DecidableEq G]
(f : AddMonoidAlgebra k G)
(r : k)
(a : G)
:
theorem
MonoidAlgebra.support_mul_single_subset
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
[DecidableEq G]
(f : MonoidAlgebra k G)
(r : k)
(a : G)
:
theorem
AddMonoidAlgebra.support_mul_single_subset
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Add G]
[DecidableEq G]
(f : AddMonoidAlgebra k G)
(r : k)
(a : G)
:
theorem
MonoidAlgebra.support_single_mul_eq_image
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
[DecidableEq G]
(f : MonoidAlgebra k G)
{r : k}
(hr : ∀ (y : k), r * y = 0 ↔ y = 0)
{x : G}
(lx : IsLeftRegular x)
:
theorem
AddMonoidAlgebra.support_single_mul_eq_image
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Add G]
[DecidableEq G]
(f : AddMonoidAlgebra k G)
{r : k}
(hr : ∀ (y : k), r * y = 0 ↔ y = 0)
{x : G}
(lx : IsAddLeftRegular x)
:
theorem
MonoidAlgebra.support_mul_single_eq_image
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
[DecidableEq G]
(f : MonoidAlgebra k G)
{r : k}
(hr : ∀ (y : k), y * r = 0 ↔ y = 0)
{x : G}
(rx : IsRightRegular x)
:
theorem
AddMonoidAlgebra.support_mul_single_eq_image
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Add G]
[DecidableEq G]
(f : AddMonoidAlgebra k G)
{r : k}
(hr : ∀ (y : k), y * r = 0 ↔ y = 0)
{x : G}
(rx : IsAddRightRegular x)
:
theorem
MonoidAlgebra.support_mul_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
[IsRightCancelMul G]
(f : MonoidAlgebra k G)
(r : k)
(hr : ∀ (y : k), y * r = 0 ↔ y = 0)
(x : G)
:
theorem
AddMonoidAlgebra.support_mul_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Add G]
[IsRightCancelAdd G]
(f : AddMonoidAlgebra k G)
(r : k)
(hr : ∀ (y : k), y * r = 0 ↔ y = 0)
(x : G)
:
theorem
MonoidAlgebra.support_single_mul
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
[IsLeftCancelMul G]
(f : MonoidAlgebra k G)
(r : k)
(hr : ∀ (y : k), r * y = 0 ↔ y = 0)
(x : G)
:
theorem
AddMonoidAlgebra.support_single_mul
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Add G]
[IsLeftCancelAdd G]
(f : AddMonoidAlgebra k G)
(r : k)
(hr : ∀ (y : k), r * y = 0 ↔ y = 0)
(x : G)
:
theorem
MonoidAlgebra.mem_span_support
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[MulOneClass G]
(f : MonoidAlgebra k G)
:
An element of k[G] is in the subalgebra generated by its support.
theorem
AddMonoidAlgebra.mem_span_support
{k : Type u₁}
{G : Type u₂}
[Semiring k]
(f : AddMonoidAlgebra k G)
:
An element of k[G] is in the submodule generated by its support.
@[deprecated AddMonoidAlgebra.mem_span_support (since := "2025-12-08")]
theorem
AddMonoidAlgebra.mem_span_support'
{k : Type u₁}
{G : Type u₂}
[Semiring k]
(f : AddMonoidAlgebra k G)
:
Alias of AddMonoidAlgebra.mem_span_support.
An element of k[G] is in the submodule generated by its support.