Documentation

Mathlib.Algebra.MvPolynomial.Comap

comap operation on MvPolynomial #

This file defines the comap function on MvPolynomial.

MvPolynomial.comap is a low-tech example of a map of "algebraic varieties," modulo the fact that mathlib does not yet define varieties.

Notation #

As in other polynomial files, we typically use the notation:

noncomputable def MvPolynomial.comap {σ : Type u_1} {τ : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R →ₐ[R] MvPolynomial τ R) :
(τR)σR

Given an algebra hom f : MvPolynomial σ R →ₐ[R] MvPolynomial τ R and a variable evaluation v : τ → R, comap f v produces a variable evaluation σ → R.

Equations
Instances For
    @[simp]
    theorem MvPolynomial.comap_apply {σ : Type u_1} {τ : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R →ₐ[R] MvPolynomial τ R) (x : τR) (i : σ) :
    comap f x i = (aeval x) (f (X i))
    @[simp]
    theorem MvPolynomial.comap_id_apply {σ : Type u_1} {R : Type u_4} [CommSemiring R] (x : σR) :
    comap (AlgHom.id R (MvPolynomial σ R)) x = x
    theorem MvPolynomial.comap_id (σ : Type u_1) (R : Type u_4) [CommSemiring R] :
    theorem MvPolynomial.comap_comp_apply {σ : Type u_1} {τ : Type u_2} {υ : Type u_3} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R →ₐ[R] MvPolynomial τ R) (g : MvPolynomial τ R →ₐ[R] MvPolynomial υ R) (x : υR) :
    comap (g.comp f) x = comap f (comap g x)
    theorem MvPolynomial.comap_comp {σ : Type u_1} {τ : Type u_2} {υ : Type u_3} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R →ₐ[R] MvPolynomial τ R) (g : MvPolynomial τ R →ₐ[R] MvPolynomial υ R) :
    comap (g.comp f) = comap f comap g
    theorem MvPolynomial.comap_eq_id_of_eq_id {σ : Type u_1} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R →ₐ[R] MvPolynomial σ R) (hf : ∀ (φ : MvPolynomial σ R), f φ = φ) (x : σR) :
    comap f x = x
    theorem MvPolynomial.comap_rename {σ : Type u_1} {τ : Type u_2} {R : Type u_4} [CommSemiring R] (f : στ) (x : τR) :
    comap (rename f) x = x f
    noncomputable def MvPolynomial.comapEquiv {σ : Type u_1} {τ : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R) :
    (τR) (σR)

    If two polynomial types over the same coefficient ring R are equivalent, there is a bijection between the types of functions from their variable types to R.

    Equations
    Instances For
      @[simp]
      theorem MvPolynomial.comapEquiv_coe {σ : Type u_1} {τ : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R) :
      (comapEquiv f) = comap f
      @[simp]
      theorem MvPolynomial.comapEquiv_symm_coe {σ : Type u_1} {τ : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial σ R ≃ₐ[R] MvPolynomial τ R) :
      (comapEquiv f).symm = comap f.symm