Division of MvPolynomial
by monomials #
Main definitions #
MvPolynomial.divMonomial x s
: dividesx
by the monomialMvPolynomial.monomial 1 s
MvPolynomial.modMonomial x s
: the remainder upon dividingx
by the monomialMvPolynomial.monomial 1 s
.
Main results #
MvPolynomial.divMonomial_add_modMonomial
,MvPolynomial.modMonomial_add_divMonomial
:divMonomial
andmodMonomial
are well-behaved as quotient and remainder operators.
Implementation notes #
Where possible, the results in this file should be first proved in the generality of
AddMonoidAlgebra
, and then the versions specialized to MvPolynomial
proved in terms of these.
Please ensure the declarations in this section are direct translations of AddMonoidAlgebra
results.
noncomputable def
MvPolynomial.divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(p : MvPolynomial σ R)
(s : σ →₀ ℕ)
:
MvPolynomial σ R
Divide by monomial 1 s
, discarding terms not divisible by this.
Equations
- p.divMonomial s = AddMonoidAlgebra.divOf p s
Instances For
@[simp]
theorem
MvPolynomial.coeff_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(s : σ →₀ ℕ)
(x : MvPolynomial σ R)
(s' : σ →₀ ℕ)
:
@[simp]
theorem
MvPolynomial.support_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(s : σ →₀ ℕ)
(x : MvPolynomial σ R)
:
@[simp]
theorem
MvPolynomial.zero_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(s : σ →₀ ℕ)
:
divMonomial 0 s = 0
theorem
MvPolynomial.divMonomial_zero
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
:
x.divMonomial 0 = x
theorem
MvPolynomial.add_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x y : MvPolynomial σ R)
(s : σ →₀ ℕ)
:
theorem
MvPolynomial.divMonomial_add
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(a b : σ →₀ ℕ)
(x : MvPolynomial σ R)
:
@[simp]
theorem
MvPolynomial.divMonomial_monomial_mul
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(a : σ →₀ ℕ)
(x : MvPolynomial σ R)
:
@[simp]
theorem
MvPolynomial.divMonomial_mul_monomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(a : σ →₀ ℕ)
(x : MvPolynomial σ R)
:
@[simp]
theorem
MvPolynomial.divMonomial_monomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(a : σ →₀ ℕ)
:
noncomputable def
MvPolynomial.modMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
(s : σ →₀ ℕ)
:
MvPolynomial σ R
The remainder upon division by monomial 1 s
.
Equations
- x.modMonomial s = AddMonoidAlgebra.modOf x s
Instances For
@[simp]
theorem
MvPolynomial.coeff_modMonomial_of_not_le
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{s' s : σ →₀ ℕ}
(x : MvPolynomial σ R)
(h : ¬s ≤ s')
:
@[simp]
theorem
MvPolynomial.coeff_modMonomial_of_le
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{s' s : σ →₀ ℕ}
(x : MvPolynomial σ R)
(h : s ≤ s')
:
@[simp]
theorem
MvPolynomial.monomial_mul_modMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(s : σ →₀ ℕ)
(x : MvPolynomial σ R)
:
@[simp]
theorem
MvPolynomial.mul_monomial_modMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(s : σ →₀ ℕ)
(x : MvPolynomial σ R)
:
@[simp]
theorem
MvPolynomial.monomial_modMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(s : σ →₀ ℕ)
:
theorem
MvPolynomial.divMonomial_add_modMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
(s : σ →₀ ℕ)
:
theorem
MvPolynomial.modMonomial_add_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
(s : σ →₀ ℕ)
:
theorem
MvPolynomial.monomial_one_dvd_iff_modMonomial_eq_zero
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{i : σ →₀ ℕ}
{x : MvPolynomial σ R}
:
@[simp]
theorem
MvPolynomial.X_mul_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(i : σ)
(x : MvPolynomial σ R)
:
(X i * x).divMonomial (Finsupp.single i 1) = x
@[simp]
theorem
MvPolynomial.X_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(i : σ)
:
(X i).divMonomial (Finsupp.single i 1) = 1
@[simp]
theorem
MvPolynomial.mul_X_divMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
(i : σ)
:
(x * X i).divMonomial (Finsupp.single i 1) = x
@[simp]
theorem
MvPolynomial.X_mul_modMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(i : σ)
(x : MvPolynomial σ R)
:
(X i * x).modMonomial (Finsupp.single i 1) = 0
@[simp]
theorem
MvPolynomial.mul_X_modMonomial
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
(i : σ)
:
(x * X i).modMonomial (Finsupp.single i 1) = 0
@[simp]
theorem
MvPolynomial.modMonomial_X
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(i : σ)
:
(X i).modMonomial (Finsupp.single i 1) = 0
theorem
MvPolynomial.divMonomial_add_modMonomial_single
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
(i : σ)
:
X i * x.divMonomial (Finsupp.single i 1) + x.modMonomial (Finsupp.single i 1) = x
theorem
MvPolynomial.modMonomial_add_divMonomial_single
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
(x : MvPolynomial σ R)
(i : σ)
:
x.modMonomial (Finsupp.single i 1) + X i * x.divMonomial (Finsupp.single i 1) = x
theorem
MvPolynomial.X_dvd_iff_modMonomial_eq_zero
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
{i : σ}
{x : MvPolynomial σ R}
:
X i ∣ x ↔ x.modMonomial (Finsupp.single i 1) = 0
Some results about dvd (∣
) on monomial
and X
#
@[simp]
theorem
MvPolynomial.monomial_one_dvd_monomial_one
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
[Nontrivial R]
{i j : σ →₀ ℕ}
:
@[simp]
theorem
MvPolynomial.X_dvd_X
{σ : Type u_1}
{R : Type u_2}
[CommSemiring R]
[Nontrivial R]
{i j : σ}
: