Documentation

Mathlib.Algebra.MvPolynomial.Nilpotent

Nilpotents and units in multivariate polynomial rings #

We prove that

theorem MvPolynomial.isNilpotent_iff {σ : Type u_1} {R : Type u_2} [CommRing R] {P : MvPolynomial σ R} :
IsNilpotent P ∀ (i : σ →₀ ), IsNilpotent (coeff i P)
instance MvPolynomial.instIsReduced {σ : Type u_1} {R : Type u_2} [CommRing R] [IsReduced R] :
theorem MvPolynomial.isUnit_iff {σ : Type u_1} {R : Type u_2} [CommRing R] {P : MvPolynomial σ R} :
IsUnit P IsUnit (coeff 0 P) ∀ (i : σ →₀ ), i 0IsNilpotent (coeff i P)
theorem MvPolynomial.isUnit_iff_eq_C_of_isReduced {σ : Type u_1} {R : Type u_2} [CommRing R] {P : MvPolynomial σ R} [IsReduced R] :
IsUnit P ∃ (r : R), IsUnit r P = C r