Documentation

Mathlib.Algebra.Order.Archimedean.IndicatorCard

Cardinality and limit of sum of indicators #

This file contains results relating the cardinality of subsets of ℕ and limits, limsups of sums of indicators.

Tags #

finite, indicator, limsup, tendsto

theorem Set.sum_indicator_eventually_eq_card {α : Type u_1} [AddCommMonoid α] (a : α) {s : Set } (hs : s.Finite) :
∀ᶠ (n : ) in Filter.atTop, kFinset.range n, s.indicator (fun (x : ) => a) k = Nat.card s a
theorem Set.infinite_iff_tendsto_sum_indicator_atTop {R : Type u_1} [OrderedAddCommMonoid R] [AddLeftStrictMono R] [Archimedean R] {r : R} (h : 0 < r) {s : Set } :
s.Infinite Filter.Tendsto (fun (n : ) => kFinset.range n, s.indicator (fun (x : ) => r) k) Filter.atTop Filter.atTop
theorem Set.limsup_eq_tendsto_sum_indicator_atTop {α : Type u_1} {R : Type u_2} [OrderedAddCommMonoid R] [AddLeftStrictMono R] [Archimedean R] {r : R} (h : 0 < r) (s : Set α) :
Filter.limsup s Filter.atTop = {ω : α | Filter.Tendsto (fun (n : ) => kFinset.range n, (s k).indicator (fun (x : α) => r) ω) Filter.atTop Filter.atTop}