Cardinality and limit of sum of indicators #
This file contains results relating the cardinality of subsets of ℕ and limits, limsups of sums of indicators.
Tags #
finite, indicator, limsup, tendsto
theorem
Set.sum_indicator_eventually_eq_card
{α : Type u_1}
[AddCommMonoid α]
(a : α)
{s : Set ℕ}
(hs : s.Finite)
:
∀ᶠ (n : ℕ) in Filter.atTop, ∑ k ∈ Finset.range n, s.indicator (fun (x : ℕ) => a) k = Nat.card ↑s • a
theorem
Set.infinite_iff_tendsto_sum_indicator_atTop
{R : Type u_1}
[OrderedAddCommMonoid R]
[AddLeftStrictMono R]
[Archimedean R]
{r : R}
(h : 0 < r)
{s : Set ℕ}
:
s.Infinite ↔ Filter.Tendsto (fun (n : ℕ) => ∑ k ∈ Finset.range n, s.indicator (fun (x : ℕ) => r) k) Filter.atTop Filter.atTop
theorem
Set.limsup_eq_tendsto_sum_indicator_atTop
{α : Type u_1}
{R : Type u_2}
[OrderedAddCommMonoid R]
[AddLeftStrictMono R]
[Archimedean R]
{r : R}
(h : 0 < r)
(s : ℕ → Set α)
:
Filter.limsup s Filter.atTop = {ω : α |
Filter.Tendsto (fun (n : ℕ) => ∑ k ∈ Finset.range n, (s k).indicator (fun (x : α) => r) ω) Filter.atTop
Filter.atTop}