Documentation

Mathlib.Algebra.Order.Group.Action

Results about CovariantClass G α HSMul.hSMul LE.le #

When working with group actions rather than modules, we drop the 0 < c condition.

Notably these are relevant for pointwise actions on set-like objects.

theorem smul_mono_right {M : Type u_2} {α : Type u_3} [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LE.le] (m : M) :
theorem smul_le_smul_left {M : Type u_2} {α : Type u_3} [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LE.le] (m : M) {a b : α} (h : a b) :
m a m b

A copy of smul_mono_right that is understood by gcongr.

theorem smul_inf_le {M : Type u_2} {α : Type u_3} [SMul M α] [SemilatticeInf α] [CovariantClass M α HSMul.hSMul LE.le] (m : M) (a₁ a₂ : α) :
m (a₁ a₂) m a₁ m a₂
theorem smul_iInf_le {ι : Sort u_1} {M : Type u_2} {α : Type u_3} [SMul M α] [CompleteLattice α] [CovariantClass M α HSMul.hSMul LE.le] {m : M} {t : ια} :
m iInf t ⨅ (i : ι), m t i
theorem smul_strictMono_right {M : Type u_2} {α : Type u_3} [SMul M α] [Preorder α] [CovariantClass M α HSMul.hSMul LT.lt] (m : M) :
theorem le_pow_smul {G : Type u_4} [Monoid G] {α : Type u_5} [Preorder α] {g : G} {a : α} [MulAction G α] [CovariantClass G α HSMul.hSMul LE.le] (h : a g a) (n : ) :
a g ^ n a
theorem pow_smul_le {G : Type u_4} [Monoid G] {α : Type u_5} [Preorder α] {g : G} {a : α} [MulAction G α] [CovariantClass G α HSMul.hSMul LE.le] (h : g a a) (n : ) :
g ^ n a a