Results about CovariantClass G α HSMul.hSMul LE.le
#
When working with group actions rather than modules, we drop the 0 < c
condition.
Notably these are relevant for pointwise actions on set-like objects.
theorem
smul_mono_right
{M : Type u_2}
{α : Type u_3}
[SMul M α]
[Preorder α]
[CovariantClass M α HSMul.hSMul LE.le]
(m : M)
:
Monotone (HSMul.hSMul m)
theorem
smul_le_smul_left
{M : Type u_2}
{α : Type u_3}
[SMul M α]
[Preorder α]
[CovariantClass M α HSMul.hSMul LE.le]
(m : M)
{a b : α}
(h : a ≤ b)
:
A copy of smul_mono_right
that is understood by gcongr
.
theorem
smul_inf_le
{M : Type u_2}
{α : Type u_3}
[SMul M α]
[SemilatticeInf α]
[CovariantClass M α HSMul.hSMul LE.le]
(m : M)
(a₁ a₂ : α)
:
theorem
smul_iInf_le
{ι : Sort u_1}
{M : Type u_2}
{α : Type u_3}
[SMul M α]
[CompleteLattice α]
[CovariantClass M α HSMul.hSMul LE.le]
{m : M}
{t : ι → α}
:
theorem
smul_strictMono_right
{M : Type u_2}
{α : Type u_3}
[SMul M α]
[Preorder α]
[CovariantClass M α HSMul.hSMul LT.lt]
(m : M)
: