Documentation

Mathlib.Algebra.Order.Group.Action.End

Tautological action by relation automorphisms #

instance RelHom.applyMulAction {α : Type u_1} {r : ααProp} :
MulAction (r →r r) α

The tautological action by r →r r on α.

Equations
@[simp]
theorem RelHom.smul_def {α : Type u_1} {r : ααProp} (f : r →r r) (a : α) :
f a = f a
instance RelHom.apply_faithfulSMul {α : Type u_1} {r : ααProp} :
instance RelEmbedding.applyMulAction {α : Type u_1} {r : ααProp} :
MulAction (r ↪r r) α

The tautological action by r ↪r r on α.

Equations
@[simp]
theorem RelEmbedding.smul_def {α : Type u_1} {r : ααProp} (f : r ↪r r) (a : α) :
f a = f a
instance RelEmbedding.apply_faithfulSMul {α : Type u_1} {r : ααProp} :
instance RelIso.applyMulAction {α : Type u_1} {r : ααProp} :
MulAction (r ≃r r) α

The tautological action by r ≃r r on α.

Equations
@[simp]
theorem RelIso.smul_def {α : Type u_1} {r : ααProp} (f : r ≃r r) (a : α) :
f a = f a
instance RelIso.apply_faithfulSMul {α : Type u_1} {r : ααProp} :