The naturals form a linear ordered monoid #
This file contains the linear ordered monoid instance on the natural numbers.
See note [foundational algebra order theory].
Instances #
Equations
- Nat.instCanonicallyLinearOrderedAddCommMonoid = CanonicallyLinearOrderedAddCommMonoid.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯
Equations
- Nat.instLinearOrderedCommMonoid = LinearOrderedCommMonoid.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯
Equations
- Nat.instLinearOrderedCancelAddCommMonoid = LinearOrderedCancelAddCommMonoid.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯
Miscellaneous lemmas #
See also pow_left_strictMonoOn₀
.
theorem
StrictMono.nat_pow
{α : Type u_1}
{n : ℕ}
{f : α → ℕ}
[Preorder α]
(hn : n ≠ 0)
(hf : StrictMono f)
:
StrictMono fun (x : α) => f x ^ n