Documentation

Mathlib.Algebra.Order.Hom.Units

Isomorphism of ordered monoids descends to units #

def OrderMonoidIso.unitsCongr {α : Type u_1} {β : Type u_2} [Preorder α] [Monoid α] [Preorder β] [Monoid β] (e : α ≃*o β) :
αˣ ≃*o βˣ

An isomorphism of ordered monoids descends to their units.

Equations
Instances For
    @[simp]
    theorem OrderMonoidIso.val_unitsCongr_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Monoid α] [Preorder β] [Monoid β] (e : α ≃*o β) (a✝ : αˣ) :
    (e.unitsCongr a✝) = e a✝
    @[simp]
    theorem OrderMonoidIso.val_inv_unitsCongr_symm_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Monoid α] [Preorder β] [Monoid β] (e : α ≃*o β) (a : βˣ) :
    (e.unitsCongr.symm a)⁻¹ = (↑e).symm a⁻¹
    @[simp]
    theorem OrderMonoidIso.val_inv_unitsCongr_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Monoid α] [Preorder β] [Monoid β] (e : α ≃*o β) (a✝ : αˣ) :
    (e.unitsCongr a✝)⁻¹ = e a✝⁻¹
    @[simp]
    theorem OrderMonoidIso.val_unitsCongr_symm_apply {α : Type u_1} {β : Type u_2} [Preorder α] [Monoid α] [Preorder β] [Monoid β] (e : α ≃*o β) (a : βˣ) :
    (e.unitsCongr.symm a) = (↑e).symm a