Documentation

Mathlib.Algebra.Order.Monoid.Units

Units in ordered monoids #

instance Units.instPreorder {α : Type u_1} [Monoid α] [Preorder α] :
Equations
instance AddUnits.instPreorder {α : Type u_1} [AddMonoid α] [Preorder α] :
Equations
@[simp]
theorem Units.val_le_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
a b a b
@[simp]
theorem AddUnits.val_le_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
a b a b
@[simp]
theorem Units.val_lt_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
a < b a < b
@[simp]
theorem AddUnits.val_lt_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
a < b a < b
Equations
Equations
instance Units.instLinearOrder {α : Type u_1} [Monoid α] [LinearOrder α] :
Equations
Equations
def Units.orderEmbeddingVal {α : Type u_1} [Monoid α] [LinearOrder α] :
αˣ ↪o α

val : αˣ → α as an order embedding.

Equations
  • Units.orderEmbeddingVal = { toFun := Units.val, inj' := , map_rel_iff' := }
Instances For

    val : add_units α → α as an order embedding.

    Equations
    • AddUnits.orderEmbeddingVal = { toFun := AddUnits.val, inj' := , map_rel_iff' := }
    Instances For
      @[simp]
      theorem AddUnits.orderEmbeddingVal_apply {α : Type u_1} [AddMonoid α] [LinearOrder α] :
      AddUnits.orderEmbeddingVal = AddUnits.val
      @[simp]
      theorem Units.orderEmbeddingVal_apply {α : Type u_1} [Monoid α] [LinearOrder α] :
      Units.orderEmbeddingVal = Units.val
      @[simp]
      theorem Units.max_val {α : Type u_1} [Monoid α] [LinearOrder α] {a b : αˣ} :
      (a b) = a b
      @[simp]
      theorem AddUnits.max_val {α : Type u_1} [AddMonoid α] [LinearOrder α] {a b : AddUnits α} :
      (a b) = a b
      @[simp]
      theorem Units.min_val {α : Type u_1} [Monoid α] [LinearOrder α] {a b : αˣ} :
      (a b) = a b
      @[simp]
      theorem AddUnits.min_val {α : Type u_1} [AddMonoid α] [LinearOrder α] {a b : AddUnits α} :
      (a b) = a b