Documentation

Mathlib.Algebra.Order.Monoid.Units

Units in ordered monoids #

@[simp]
theorem Units.val_le_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
a b a b
@[simp]
theorem AddUnits.val_le_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
a b a b
@[simp]
theorem Units.val_lt_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
a < b a < b
@[simp]
theorem AddUnits.val_lt_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
a < b a < b
instance Units.instMaxOfLinearOrder {α : Type u_1} [Monoid α] [LinearOrder α] :
Equations
Equations
instance Units.instMinOfLinearOrder {α : Type u_1} [Monoid α] [LinearOrder α] :
Equations
Equations
@[simp]
theorem Units.max_val {α : Type u_1} [Monoid α] [LinearOrder α] (a b : αˣ) :
(max a b) = max a b
@[simp]
theorem AddUnits.max_val {α : Type u_1} [AddMonoid α] [LinearOrder α] (a b : AddUnits α) :
(max a b) = max a b
@[simp]
theorem Units.min_val {α : Type u_1} [Monoid α] [LinearOrder α] (a b : αˣ) :
(min a b) = min a b
@[simp]
theorem AddUnits.min_val {α : Type u_1} [AddMonoid α] [LinearOrder α] (a b : AddUnits α) :
(min a b) = min a b
instance Units.instOrd {α : Type u_1} [Monoid α] [Ord α] :
Equations
instance AddUnits.instOrd {α : Type u_1} [AddMonoid α] [Ord α] :
Equations
theorem Units.compare_val {α : Type u_1} [Monoid α] [Ord α] (a b : αˣ) :
compare a b = compare a b
theorem AddUnits.compare_val {α : Type u_1} [AddMonoid α] [Ord α] (a b : AddUnits α) :
compare a b = compare a b
def Units.orderEmbeddingVal {α : Type u_1} [Monoid α] [LinearOrder α] :
αˣ ↪o α

val : αˣ → α as an order embedding.

Equations
Instances For

    val : add_units α → α as an order embedding.

    Equations
    Instances For