Algebraic instances for unit intervals #
For suitably structured underlying type α
, we exhibit the structure of
the unit intervals (Set.Icc
, Set.Ioc
, Set.Ioc
, and Set.Ioo
) from 0
to 1
.
Note: Instances for the interval Ici 0
are dealt with in Algebra/Order/Nonneg.lean
.
Main definitions #
The strongest typeclass provided on each interval is:
TODO #
- algebraic instances for intervals -1 to 1
- algebraic instances for
Ici 1
- algebraic instances for
(Ioo (-1) 1)ᶜ
- provide
distribNeg
instances where applicable - prove versions of
mul_le_{left,right}
for other intervals - prove versions of the lemmas in
Topology/UnitInterval
withℝ
generalized to some arbitrary ordered semiring
Instances for ↥(Set.Icc 0 1)
#
Equations
- Set.Icc.zero = { zero := ⟨0, ⋯⟩ }
Equations
- Set.Icc.one = { one := ⟨1, ⋯⟩ }
@[simp]
@[simp]
@[simp]
@[simp]
like coe_nonneg
, but with the inequality in Icc (0:α) 1
.
like coe_le_one
, but with the inequality in Icc (0:α) 1
.
@[simp]
@[simp]
Equations
- Set.Icc.monoidWithZero = Function.Injective.monoidWithZero (fun (a : { x : α // x ∈ Set.Icc 0 1 }) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯
instance
Set.Icc.commMonoidWithZero
{α : Type u_2}
[OrderedCommSemiring α]
:
CommMonoidWithZero ↑(Set.Icc 0 1)
Equations
- Set.Icc.commMonoidWithZero = Function.Injective.commMonoidWithZero (fun (a : { x : α // x ∈ Set.Icc 0 1 }) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯
instance
Set.Icc.cancelMonoidWithZero
{α : Type u_2}
[OrderedRing α]
[NoZeroDivisors α]
:
CancelMonoidWithZero ↑(Set.Icc 0 1)
Equations
- Set.Icc.cancelMonoidWithZero = Function.Injective.cancelMonoidWithZero (fun (v : ↑(Set.Icc 0 1)) => ↑v) ⋯ ⋯ ⋯ ⋯ ⋯
instance
Set.Icc.cancelCommMonoidWithZero
{α : Type u_2}
[OrderedCommRing α]
[NoZeroDivisors α]
:
CancelCommMonoidWithZero ↑(Set.Icc 0 1)
Equations
- Set.Icc.cancelCommMonoidWithZero = Function.Injective.cancelCommMonoidWithZero (fun (v : ↑(Set.Icc 0 1)) => ↑v) ⋯ ⋯ ⋯ ⋯ ⋯
Instances for ↥(Set.Ico 0 1)
#
Equations
- Set.Ico.zero = { zero := ⟨0, ⋯⟩ }
@[simp]
theorem
Set.Ico.mk_zero
{α : Type u_1}
[OrderedSemiring α]
[Nontrivial α]
(h : 0 ∈ Set.Ico 0 1)
:
⟨0, h⟩ = 0
@[simp]
theorem
Set.Ico.coe_eq_zero
{α : Type u_1}
[OrderedSemiring α]
[Nontrivial α]
{x : ↑(Set.Ico 0 1)}
:
theorem
Set.Ico.coe_ne_zero
{α : Type u_1}
[OrderedSemiring α]
[Nontrivial α]
{x : ↑(Set.Ico 0 1)}
:
theorem
Set.Ico.nonneg
{α : Type u_1}
[OrderedSemiring α]
[Nontrivial α]
{t : ↑(Set.Ico 0 1)}
:
0 ≤ t
like coe_nonneg
, but with the inequality in Ico (0:α) 1
.
@[simp]
Equations
- Set.Ico.semigroup = Function.Injective.semigroup (fun (a : { x : α // x ∈ Set.Ico 0 1 }) => ↑a) ⋯ ⋯
Equations
- Set.Ico.commSemigroup = Function.Injective.commSemigroup (fun (a : { x : α // x ∈ Set.Ico 0 1 }) => ↑a) ⋯ ⋯
Instances for ↥(Set.Ioc 0 1)
#
Equations
- Set.Ioc.one = { one := ⟨1, ⋯⟩ }
@[simp]
@[simp]
like coe_le_one
, but with the inequality in Ioc (0:α) 1
.
@[simp]
@[simp]
Equations
- Set.Ioc.semigroup = Function.Injective.semigroup (fun (a : { x : α // x ∈ Set.Ioc 0 1 }) => ↑a) ⋯ ⋯
Equations
- Set.Ioc.monoid = Function.Injective.monoid (fun (a : { x : α // x ∈ Set.Ioc 0 1 }) => ↑a) ⋯ ⋯ ⋯ ⋯
instance
Set.Ioc.commSemigroup
{α : Type u_2}
[StrictOrderedCommSemiring α]
:
CommSemigroup ↑(Set.Ioc 0 1)
Equations
- Set.Ioc.commSemigroup = Function.Injective.commSemigroup (fun (a : { x : α // x ∈ Set.Ioc 0 1 }) => ↑a) ⋯ ⋯
Equations
- Set.Ioc.commMonoid = Function.Injective.commMonoid (fun (a : { x : α // x ∈ Set.Ioc 0 1 }) => ↑a) ⋯ ⋯ ⋯ ⋯
instance
Set.Ioc.cancelMonoid
{α : Type u_2}
[StrictOrderedRing α]
[IsDomain α]
:
CancelMonoid ↑(Set.Ioc 0 1)
Equations
- Set.Ioc.cancelMonoid = CancelMonoid.mk ⋯
instance
Set.Ioc.cancelCommMonoid
{α : Type u_2}
[StrictOrderedCommRing α]
[IsDomain α]
:
CancelCommMonoid ↑(Set.Ioc 0 1)
Equations
- Set.Ioc.cancelCommMonoid = CancelCommMonoid.mk ⋯
Instances for ↥(Set.Ioo 0 1)
#
@[simp]
Equations
- Set.Ioo.semigroup = Function.Injective.semigroup (fun (a : { x : α // x ∈ Set.Ioo 0 1 }) => ↑a) ⋯ ⋯
instance
Set.Ioo.commSemigroup
{α : Type u_2}
[StrictOrderedCommSemiring α]
:
CommSemigroup ↑(Set.Ioo 0 1)
Equations
- Set.Ioo.commSemigroup = Function.Injective.commSemigroup (fun (a : { x : α // x ∈ Set.Ioo 0 1 }) => ↑a) ⋯ ⋯