Boolean algebra structure on idempotents in a commutative (semi)ring #
We show that the idempotent in a commutative ring form a Boolean algebra, with complement given
by a ↦ 1 - a
and infimum given by multiplication. In a commutative semiring where subtraction
is not available, it is still true that pairs of elements (a, b)
satisfying a * b = 0
and
a + b = 1
form a Boolean algebra (such elements are automatically idempotents, and such a pair
is uniquely determined by either a
or b
).
instance
instHasComplSubtypeProdAndEqHMulFstSndOfNatHAdd
{α : Type u_1}
[CommMonoid α]
[AddCommMonoid α]
:
Equations
- One or more equations did not get rendered due to their size.
Equations
instance
instSemilatticeInfSubtypeIsIdempotentElem
{α : Type u_1}
[CommSemigroup α]
:
SemilatticeInf { a : α // IsIdempotentElem a }
Equations
- instSemilatticeInfSubtypeIsIdempotentElem = SemilatticeInf.mk (fun (a b : { a : α // IsIdempotentElem a }) => ⟨↑a * ↑b, ⋯⟩) ⋯ ⋯ ⋯
instance
instOrderTopSubtypeIsIdempotentElem
{α : Type u_1}
[CommMonoid α]
:
OrderTop { a : α // IsIdempotentElem a }
Equations
instance
instOrderBotSubtypeIsIdempotentElem
{α : Type u_1}
[CommMonoidWithZero α]
:
OrderBot { a : α // IsIdempotentElem a }
Equations
instance
instLatticeSubtypeIsIdempotentElem
{α : Type u_1}
[CommRing α]
:
Lattice { a : α // IsIdempotentElem a }
Equations
instance
instBooleanAlgebraSubtypeIsIdempotentElem
{α : Type u_1}
[CommRing α]
:
BooleanAlgebra { a : α // IsIdempotentElem a }
Equations
In a commutative ring, the idempotents are in 1-1 correspondence with pairs of elements
whose product is 0 and whose sum is 1. The correspondence is given by a ↔ (a, 1 - a)
.
Equations
- One or more equations did not get rendered due to their size.