Successor and predecessor on type tags #
This file declates successor and predecessor orders on type tags.
Equations
- instSuccOrderMultiplicative = h
Equations
- instPredOrderMultiplicative = h
instance
instIsSuccArchimedeanMultiplicative
{X : Type u_1}
[Preorder X]
[SuccOrder X]
[h : IsSuccArchimedean X]
:
Equations
- ⋯ = h
instance
instIsSuccArchimedeanAdditive
{X : Type u_1}
[Preorder X]
[SuccOrder X]
[h : IsSuccArchimedean X]
:
Equations
- ⋯ = h
instance
instIsPredArchimedeanMultiplicative
{X : Type u_1}
[Preorder X]
[PredOrder X]
[h : IsPredArchimedean X]
:
Equations
- ⋯ = h
instance
instIsPredArchimedeanAdditive
{X : Type u_1}
[Preorder X]
[PredOrder X]
[h : IsPredArchimedean X]
:
Equations
- ⋯ = h
@[simp]
theorem
Order.succ_ofMul
{X : Type u_1}
[Preorder X]
[SuccOrder X]
(x : X)
:
Order.succ (Additive.ofMul x) = Additive.ofMul (Order.succ x)
@[simp]
theorem
Order.succ_toMul
{X : Type u_1}
[Preorder X]
[SuccOrder X]
(x : X)
:
Order.succ (Additive.toMul x) = Additive.toMul (Order.succ x)
@[simp]
theorem
Order.succ_ofAdd
{X : Type u_1}
[Preorder X]
[SuccOrder X]
(x : X)
:
Order.succ (Multiplicative.ofAdd x) = Multiplicative.ofAdd (Order.succ x)
@[simp]
theorem
Order.succ_toAdd
{X : Type u_1}
[Preorder X]
[SuccOrder X]
(x : X)
:
Order.succ (Multiplicative.toAdd x) = Multiplicative.toAdd (Order.succ x)
@[simp]
theorem
Order.pred_ofMul
{X : Type u_1}
[Preorder X]
[PredOrder X]
(x : X)
:
Order.pred (Additive.ofMul x) = Additive.ofMul (Order.pred x)
@[simp]
theorem
Order.pred_toMul
{X : Type u_1}
[Preorder X]
[PredOrder X]
(x : X)
:
Order.pred (Additive.toMul x) = Additive.toMul (Order.pred x)
@[simp]
theorem
Order.pred_ofAdd
{X : Type u_1}
[Preorder X]
[PredOrder X]
(x : X)
:
Order.pred (Multiplicative.ofAdd x) = Multiplicative.ofAdd (Order.pred x)
@[simp]
theorem
Order.pred_toAdd
{X : Type u_1}
[Preorder X]
[PredOrder X]
(x : X)
:
Order.pred (Multiplicative.toAdd x) = Multiplicative.toAdd (Order.pred x)