Documentation

Mathlib.Algebra.Order.SuccPred.TypeTags

Successor and predecessor on type tags #

This file declates successor and predecessor orders on type tags.

Equations
  • instSuccOrderMultiplicative = h
instance instSuccOrderAdditive {X : Type u_1} [Preorder X] [h : SuccOrder X] :
Equations
  • instSuccOrderAdditive = h
Equations
  • instPredOrderMultiplicative = h
instance instPredOrderAdditive {X : Type u_1} [Preorder X] [h : PredOrder X] :
Equations
  • instPredOrderAdditive = h
@[simp]
theorem Order.succ_ofMul {X : Type u_1} [Preorder X] [SuccOrder X] (x : X) :
Order.succ (Additive.ofMul x) = Additive.ofMul (Order.succ x)
@[simp]
theorem Order.succ_toMul {X : Type u_1} [Preorder X] [SuccOrder X] (x : X) :
Order.succ (Additive.toMul x) = Additive.toMul (Order.succ x)
@[simp]
theorem Order.succ_ofAdd {X : Type u_1} [Preorder X] [SuccOrder X] (x : X) :
Order.succ (Multiplicative.ofAdd x) = Multiplicative.ofAdd (Order.succ x)
@[simp]
theorem Order.succ_toAdd {X : Type u_1} [Preorder X] [SuccOrder X] (x : X) :
Order.succ (Multiplicative.toAdd x) = Multiplicative.toAdd (Order.succ x)
@[simp]
theorem Order.pred_ofMul {X : Type u_1} [Preorder X] [PredOrder X] (x : X) :
Order.pred (Additive.ofMul x) = Additive.ofMul (Order.pred x)
@[simp]
theorem Order.pred_toMul {X : Type u_1} [Preorder X] [PredOrder X] (x : X) :
Order.pred (Additive.toMul x) = Additive.toMul (Order.pred x)
@[simp]
theorem Order.pred_ofAdd {X : Type u_1} [Preorder X] [PredOrder X] (x : X) :
Order.pred (Multiplicative.ofAdd x) = Multiplicative.ofAdd (Order.pred x)
@[simp]
theorem Order.pred_toAdd {X : Type u_1} [Preorder X] [PredOrder X] (x : X) :
Order.pred (Multiplicative.toAdd x) = Multiplicative.toAdd (Order.pred x)