Documentation

Mathlib.Order.SuccPred.Archimedean

Archimedean successor and predecessor #

class IsSuccArchimedean (α : Type u_3) [Preorder α] [SuccOrder α] :

A SuccOrder is succ-archimedean if one can go from any two comparable elements by iterating succ

  • exists_succ_iterate_of_le : ∀ {a b : α}, a b∃ (n : ), Order.succ^[n] a = b

    If a ≤ b then one can get to a from b by iterating succ

Instances
    class IsPredArchimedean (α : Type u_3) [Preorder α] [PredOrder α] :

    A PredOrder is pred-archimedean if one can go from any two comparable elements by iterating pred

    • exists_pred_iterate_of_le : ∀ {a b : α}, a b∃ (n : ), Order.pred^[n] b = a

      If a ≤ b then one can get to b from a by iterating pred

    Instances
      theorem LE.le.exists_succ_iterate {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {a b : α} (h : a b) :
      ∃ (n : ), Order.succ^[n] a = b
      theorem exists_succ_iterate_iff_le {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {a b : α} :
      (∃ (n : ), Order.succ^[n] a = b) a b
      theorem Succ.rec {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {P : αProp} {m : α} (h0 : P m) (h1 : ∀ (n : α), m nP nP (Order.succ n)) ⦃n : α (hmn : m n) :
      P n

      Induction principle on a type with a SuccOrder for all elements above a given element m.

      theorem Succ.rec_iff {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.succ a)) {a b : α} (h : a b) :
      p a p b
      theorem le_total_of_codirected {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {r v₁ v₂ : α} (h₁ : r v₁) (h₂ : r v₂) :
      v₁ v₂ v₂ v₁
      theorem LE.le.exists_pred_iterate {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {a b : α} (h : a b) :
      ∃ (n : ), Order.pred^[n] b = a
      theorem exists_pred_iterate_iff_le {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {a b : α} :
      (∃ (n : ), Order.pred^[n] b = a) a b
      theorem Pred.rec {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {P : αProp} {m : α} (h0 : P m) (h1 : nm, P nP (Order.pred n)) ⦃n : α (hmn : n m) :
      P n

      Induction principle on a type with a PredOrder for all elements below a given element m.

      theorem Pred.rec_iff {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.pred a)) {a b : α} (h : a b) :
      p a p b
      theorem le_total_of_directed {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {r v₁ v₂ : α} (h₁ : v₁ r) (h₂ : v₂ r) :
      v₁ v₂ v₂ v₁
      theorem lt_or_le_of_codirected {α : Type u_1} [PartialOrder α] [SuccOrder α] [IsSuccArchimedean α] {r v₁ v₂ : α} (h₁ : r v₁) (h₂ : r v₂) :
      v₁ < v₂ v₂ v₁
      @[reducible, inline]
      abbrev IsSuccArchimedean.linearOrder {α : Type u_1} [PartialOrder α] [SuccOrder α] [IsSuccArchimedean α] [DecidableEq α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableRel fun (x1 x2 : α) => x1 < x2] [IsDirected α fun (x1 x2 : α) => x1 x2] :

      This isn't an instance due to a loop with LinearOrder.

      Equations
      • IsSuccArchimedean.linearOrder = LinearOrder.mk inferInstance inferInstance inferInstance
      Instances For
        theorem lt_or_le_of_directed {α : Type u_1} [PartialOrder α] [PredOrder α] [IsPredArchimedean α] {r v₁ v₂ : α} (h₁ : v₁ r) (h₂ : v₂ r) :
        v₁ < v₂ v₂ v₁
        @[reducible, inline]
        abbrev IsPredArchimedean.linearOrder {α : Type u_1} [PartialOrder α] [PredOrder α] [IsPredArchimedean α] [DecidableEq α] [DecidableRel fun (x1 x2 : α) => x1 x2] [DecidableRel fun (x1 x2 : α) => x1 < x2] [IsDirected α fun (x1 x2 : α) => x1 x2] :

        This isn't an instance due to a loop with LinearOrder.

        Equations
        Instances For
          theorem succ_max {α : Type u_1} [LinearOrder α] [SuccOrder α] (a b : α) :
          theorem succ_min {α : Type u_1} [LinearOrder α] [SuccOrder α] (a b : α) :
          theorem exists_succ_iterate_or {α : Type u_1} [LinearOrder α] [SuccOrder α] [IsSuccArchimedean α] {a b : α} :
          (∃ (n : ), Order.succ^[n] a = b) ∃ (n : ), Order.succ^[n] b = a
          theorem Succ.rec_linear {α : Type u_1} [LinearOrder α] [SuccOrder α] [IsSuccArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.succ a)) (a b : α) :
          p a p b
          theorem pred_max {α : Type u_1} [LinearOrder α] [PredOrder α] (a b : α) :
          theorem pred_min {α : Type u_1} [LinearOrder α] [PredOrder α] (a b : α) :
          theorem exists_pred_iterate_or {α : Type u_1} [LinearOrder α] [PredOrder α] [IsPredArchimedean α] {a b : α} :
          (∃ (n : ), Order.pred^[n] b = a) ∃ (n : ), Order.pred^[n] a = b
          theorem Pred.rec_linear {α : Type u_1} [LinearOrder α] [PredOrder α] [IsPredArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.pred a)) (a b : α) :
          p a p b
          @[deprecated StrictMono.not_bddAbove_range_of_isSuccArchimedean]
          theorem StrictMono.not_bddAbove_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMaxOrder α] [SuccOrder β] [IsSuccArchimedean β] (hf : StrictMono f) :

          Alias of StrictMono.not_bddAbove_range_of_isSuccArchimedean.

          @[deprecated StrictMono.not_bddBelow_range_of_isPredArchimedean]
          theorem StrictMono.not_bddBelow_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMinOrder α] [PredOrder β] [IsPredArchimedean β] (hf : StrictMono f) :

          Alias of StrictMono.not_bddBelow_range_of_isPredArchimedean.

          @[deprecated StrictAnti.not_bddBelow_range_of_isSuccArchimedean]
          theorem StrictAnti.not_bddAbove_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMinOrder α] [SuccOrder β] [IsSuccArchimedean β] (hf : StrictAnti f) :

          Alias of StrictAnti.not_bddBelow_range_of_isSuccArchimedean.

          @[deprecated StrictAnti.not_bddBelow_range_of_isPredArchimedean]
          theorem StrictAnti.not_bddBelow_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMaxOrder α] [PredOrder β] [IsPredArchimedean β] (hf : StrictAnti f) :

          Alias of StrictAnti.not_bddBelow_range_of_isPredArchimedean.

          @[instance 100]
          Equations
          • =
          @[instance 100]
          Equations
          • =
          theorem Succ.rec_bot {α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] [IsSuccArchimedean α] (p : αProp) (hbot : p ) (hsucc : ∀ (a : α), p ap (Order.succ a)) (a : α) :
          p a
          theorem Pred.rec_top {α : Type u_1} [Preorder α] [OrderTop α] [PredOrder α] [IsPredArchimedean α] (p : αProp) (htop : p ) (hpred : ∀ (a : α), p ap (Order.pred a)) (a : α) :
          p a
          theorem SuccOrder.forall_ne_bot_iff {α : Type u_1} [Nontrivial α] [PartialOrder α] [OrderBot α] [SuccOrder α] [IsSuccArchimedean α] (P : αProp) :
          (∀ (i : α), i P i) ∀ (i : α), P (SuccOrder.succ i)
          theorem BddAbove.exists_isGreatest_of_nonempty {X : Type u_3} [LinearOrder X] [SuccOrder X] [IsSuccArchimedean X] {S : Set X} (hS : BddAbove S) (hS' : S.Nonempty) :
          ∃ (x : X), IsGreatest S x
          theorem BddBelow.exists_isLeast_of_nonempty {X : Type u_3} [LinearOrder X] [PredOrder X] [IsPredArchimedean X] {S : Set X} (hS : BddBelow S) (hS' : S.Nonempty) :
          ∃ (x : X), IsLeast S x

          IsSuccArchimedean transfers across equivalences between SuccOrders.

          IsPredArchimedean transfers across equivalences between PredOrders.

          instance Set.OrdConnected.isPredArchimedean {α : Type u_1} [PartialOrder α] [PredOrder α] [IsPredArchimedean α] (s : Set α) [s.OrdConnected] :
          Equations
          • =
          instance Set.OrdConnected.isSuccArchimedean {α : Type u_1} [PartialOrder α] [SuccOrder α] [IsSuccArchimedean α] (s : Set α) [s.OrdConnected] :
          Equations
          • =
          theorem monotoneOn_of_le_succ {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax aa sOrder.succ a sf a f (Order.succ a)) :
          theorem antitoneOn_of_succ_le {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax aa sOrder.succ a sf (Order.succ a) f a) :
          theorem strictMonoOn_of_lt_succ {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax aa sOrder.succ a sf a < f (Order.succ a)) :
          theorem strictAntiOn_of_succ_lt {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax aa sOrder.succ a sf (Order.succ a) < f a) :
          theorem monotone_of_le_succ {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMax af a f (Order.succ a)) :
          theorem antitone_of_succ_le {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMax af (Order.succ a) f a) :
          theorem strictMono_of_lt_succ {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMax af a < f (Order.succ a)) :
          theorem strictAnti_of_succ_lt {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMax af (Order.succ a) < f a) :
          theorem monotoneOn_of_pred_le {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMin aa sOrder.pred a sf (Order.pred a) f a) :
          theorem antitoneOn_of_le_pred {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMin aa sOrder.pred a sf a f (Order.pred a)) :
          theorem strictMonoOn_of_pred_lt {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMin aa sOrder.pred a sf (Order.pred a) < f a) :
          theorem strictAntiOn_of_lt_pred {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {s : Set α} {f : αβ} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMin aa sOrder.pred a sf a < f (Order.pred a)) :
          theorem monotone_of_pred_le {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMin af (Order.pred a) f a) :
          theorem antitone_of_le_pred {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMin af a f (Order.pred a)) :
          theorem strictMono_of_pred_lt {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMin af (Order.pred a) < f a) :
          theorem strictAnti_of_lt_pred {α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [PredOrder α] [IsPredArchimedean α] {f : αβ} (hf : ∀ (a : α), ¬IsMin af a < f (Order.pred a)) :