theorem
WithBot.succ_natCast
{α : Type u_1}
[Preorder α]
[OrderBot α]
[AddMonoidWithOne α]
[SuccAddOrder α]
(n : ℕ)
:
@[simp]
theorem
WithBot.succ_zero
{α : Type u_1}
[Preorder α]
[OrderBot α]
[AddMonoidWithOne α]
[SuccAddOrder α]
:
WithBot.succ 0 = 1
@[simp]
theorem
WithBot.succ_one
{α : Type u_1}
[Preorder α]
[OrderBot α]
[AddMonoidWithOne α]
[SuccAddOrder α]
:
WithBot.succ 1 = 2
@[simp]
theorem
WithBot.succ_ofNat
{α : Type u_1}
[Preorder α]
[OrderBot α]
[AddMonoidWithOne α]
[SuccAddOrder α]
(n : ℕ)
[n.AtLeastTwo]
:
(OfNat.ofNat n).succ = OfNat.ofNat n + 1