Documentation

Mathlib.AlgebraicTopology.FundamentalGroupoid.Product

Fundamental groupoid preserves products #

In this file, we give the following definitions/theorems:

The projection map Π i, X i → X i induces a map π(Π i, X i) ⟶ π(X i).

Equations
Instances For
    @[simp]
    theorem FundamentalGroupoidFunctor.proj_map {I : Type u} (X : ITopCat) (i : I) (x₀ x₁ : (FundamentalGroupoid.fundamentalGroupoidFunctor.obj (TopCat.of ((i : I) → (X i))))) (p : x₀ x₁) :

    The projection map is precisely Path.Homotopic.proj interpreted as a functor

    The map taking the pi product of a family of fundamental groupoids to the fundamental groupoid of the pi product. This is actually an isomorphism (see piIso)

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem FundamentalGroupoidFunctor.piToPiTop_obj_as {I : Type u} (X : ITopCat) (g : (i : I) → (FundamentalGroupoid.fundamentalGroupoidFunctor.obj (X i))) (i : I) :
      ((piToPiTop X).obj g).as i = (g i).as
      @[simp]
      theorem FundamentalGroupoidFunctor.piToPiTop_map {I : Type u} (X : ITopCat) {X✝ Y✝ : (i : I) → (FundamentalGroupoid.fundamentalGroupoidFunctor.obj (X i))} (p : X✝ Y✝) :

      Shows piToPiTop is an isomorphism, whose inverse is precisely the pi product of the induced projections. This shows that fundamentalGroupoidFunctor preserves products.

      Equations
      Instances For
        @[simp]

        The map taking the product of two fundamental groupoids to the fundamental groupoid of the product of the two topological spaces. This is in fact an isomorphism (see prodIso).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem FundamentalGroupoidFunctor.prodToProdTop_map (A B : TopCat) {x₀ x₁ : (FundamentalGroupoid.fundamentalGroupoidFunctor.obj A)} {y₀ y₁ : (FundamentalGroupoid.fundamentalGroupoidFunctor.obj B)} (p₀ : x₀ x₁) (p₁ : y₀ y₁) :
          (prodToProdTop A B).map (p₀, p₁) = Path.Homotopic.prod p₀ p₁

          Shows prodToProdTop is an isomorphism, whose inverse is precisely the product of the induced left and right projections.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For