Presentation of the simplex category by generators and relations. #
We introduce SimplexCategoryGenRel
as the category presented by generating
morphisms δ i : [n] ⟶ [n + 1]
and σ i : [n + 1] ⟶ [n]
and subject to the
simplicial identities, and we provide induction principles for reasoning about
objects and morphisms in this category.
This category admits a canonical functor toSimplexCategory
to the usual simplex category.
The fact that this functor is an equivalence will be recorded in a separate file.
The objects of the free simplex quiver are the natural numbers.
Equations
Instances For
Getting back the natural number from the objects.
Instances For
Equations
- FreeSimplexQuiver.quiv = { Hom := FreeSimplexQuiver.Hom }
FreeSimplexQuiver.δ i
represents the i
-th face map .mk n ⟶ .mk (n + 1)
.
Equations
Instances For
FreeSimplexQuiver.σ i
represents i
-th degeneracy map .mk (n + 1) ⟶ .mk n
.
Equations
Instances For
FreeSimplexQuiver.homRel
is the relation on morphisms freely generated on the
five simplicial identities.
- δ_comp_δ {n : ℕ} {i j : Fin (n + 2)} (H : i ≤ j) : homRel (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (δ i)) (CategoryTheory.Paths.of.map (δ j.succ))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (δ j)) (CategoryTheory.Paths.of.map (δ i.castSucc)))
- δ_comp_σ_of_le {n : ℕ} {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i ≤ j.castSucc) : homRel (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (δ i.castSucc)) (CategoryTheory.Paths.of.map (σ j.succ))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (σ j)) (CategoryTheory.Paths.of.map (δ i)))
- δ_comp_σ_self {n : ℕ} {i : Fin (n + 1)} : homRel (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (δ i.castSucc)) (CategoryTheory.Paths.of.map (σ i))) (CategoryTheory.CategoryStruct.id (CategoryTheory.Paths.of.obj (mk n)))
- δ_comp_σ_succ {n : ℕ} {i : Fin (n + 1)} : homRel (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (δ i.succ)) (CategoryTheory.Paths.of.map (σ i))) (CategoryTheory.CategoryStruct.id (CategoryTheory.Paths.of.obj (mk n)))
- δ_comp_σ_of_gt {n : ℕ} {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) : homRel (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (δ i.succ)) (CategoryTheory.Paths.of.map (σ j.castSucc))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (σ j)) (CategoryTheory.Paths.of.map (δ i)))
- σ_comp_σ {n : ℕ} {i j : Fin (n + 1)} (H : i ≤ j) : homRel (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (σ i.castSucc)) (CategoryTheory.Paths.of.map (σ j))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map (σ j.succ)) (CategoryTheory.Paths.of.map (σ i)))
Instances For
SimplexCategory is the category presented by generators and relation by the simplicial identities.
Instances For
SimplexCategoryGenRel.mk
is the main constructor for objects of SimplexCategoryGenRel
.
Equations
- SimplexCategoryGenRel.mk n = { as := CategoryTheory.Paths.of.obj n }
Instances For
SimplexCategoryGenRel.δ i
is the i
-th face map .mk n ⟶ .mk (n + 1)
.
Equations
Instances For
SimplexCategoryGenRel.σ i
is the i
-th degeneracy map .mk (n + 1) ⟶ .mk n
.
Equations
Instances For
The length of an object of SimplexCategoryGenRel
.
Equations
- x.len = CategoryTheory.Quotient.casesOn x fun (n : CategoryTheory.Paths FreeSimplexQuiver) => n
Instances For
A morphism is called a degeneracy if it is a σ i
for some i : Fin (n + 1)
.
- σ {n : ℕ} (i : Fin (n + 1)) : degeneracies (SimplexCategoryGenRel.σ i)
Instances For
A morphism is a generator if it is either a face or a degeneracy.
Equations
Instances For
A property is true for every morphism iff it holds for generators and is multiplicative.
An unrolled version of the induction principle obtained in the previous lemma.
An induction principle for reasonning about morphisms in SimplexCategoryGenRel, where we compose with generators on the right.
An induction principle for reasonning about objects in SimplexCategoryGenRel
. This should be
used instead of identifying an object with mk
of its len
.
Equations
- SimplexCategoryGenRel.rec H x = H x.len
Instances For
A basic ext
lemma for objects of SimplexCategoryGenRel
.
A version of δ_comp_δ with indices in ℕ satisfying relevant inequalities.
A version of σ_comp_σ with indices in ℕ satisfying relevant inequalities.
The canonical functor from SimplexCategoryGenRel
to SimplexCategory, which exists as the
simplicial identities hold in SimplexCategory
.
Equations
- One or more equations did not get rendered due to their size.