Documentation

Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.Basic

Presentation of the simplex category by generators and relations. #

We introduce SimplexCategoryGenRel as the category presented by generating morphisms δ i : [n] ⟶ [n + 1] and σ i : [n + 1] ⟶ [n] and subject to the simplicial identities, and we provide induction principles for reasoning about objects and morphisms in this category.

This category admits a canonical functor toSimplexCategory to the usual simplex category. The fact that this functor is an equivalence will be recorded in a separate file.

The objects of the free simplex quiver are the natural numbers.

Equations
Instances For

    Making an object of FreeSimplexQuiver out of a natural number.

    Equations
    Instances For

      Getting back the natural number from the objects.

      Equations
      Instances For

        A morphism in FreeSimplexQuiver is either a face map (δ) or a degeneracy map (σ).

        Instances For
          @[reducible, inline]
          abbrev FreeSimplexQuiver.δ {n : } (i : Fin (n + 2)) :
          mk n mk (n + 1)

          FreeSimplexQuiver.δ i represents the i-th face map .mk n ⟶ .mk (n + 1).

          Equations
          Instances For
            @[reducible, inline]
            abbrev FreeSimplexQuiver.σ {n : } (i : Fin (n + 1)) :
            mk (n + 1) mk n

            FreeSimplexQuiver.σ i represents i-th degeneracy map .mk (n + 1) ⟶ .mk n.

            Equations
            Instances For

              FreeSimplexQuiver.homRel is the relation on morphisms freely generated on the five simplicial identities.

              Instances For

                SimplexCategory is the category presented by generators and relation by the simplicial identities.

                Equations
                Instances For
                  @[reducible, inline]
                  abbrev SimplexCategoryGenRel.δ {n : } (i : Fin (n + 2)) :
                  mk n mk (n + 1)

                  SimplexCategoryGenRel.δ i is the i-th face map .mk n ⟶ .mk (n + 1).

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev SimplexCategoryGenRel.σ {n : } (i : Fin (n + 1)) :
                    mk (n + 1) mk n

                    SimplexCategoryGenRel.σ i is the i-th degeneracy map .mk (n + 1) ⟶ .mk n.

                    Equations
                    Instances For
                      @[simp]
                      theorem SimplexCategoryGenRel.mk_len (n : ) :
                      (mk n).len = n

                      A morphism is called a face if it is a δ i for some i : Fin (n + 2).

                      Instances For

                        A morphism is called a degeneracy if it is a σ i for some i : Fin (n + 1).

                        Instances For

                          A property is true for every morphism iff it holds for generators and is multiplicative.

                          theorem SimplexCategoryGenRel.hom_induction (P : CategoryTheory.MorphismProperty SimplexCategoryGenRel) (id : ∀ {n : }, P (CategoryTheory.CategoryStruct.id (mk n))) (comp_δ : ∀ {n m : } (u : mk n mk m) (i : Fin (m + 2)), P uP (CategoryTheory.CategoryStruct.comp u (δ i))) (comp_σ : ∀ {n m : } (u : mk n mk (m + 1)) (i : Fin (m + 1)), P uP (CategoryTheory.CategoryStruct.comp u (σ i))) {a b : SimplexCategoryGenRel} (f : a b) :
                          P f

                          An unrolled version of the induction principle obtained in the previous lemma.

                          theorem SimplexCategoryGenRel.hom_induction' (P : CategoryTheory.MorphismProperty SimplexCategoryGenRel) (id : ∀ {n : }, P (CategoryTheory.CategoryStruct.id (mk n))) (δ_comp : ∀ {n m : } (u : mk (m + 1) mk n) (i : Fin (m + 2)), P uP (CategoryTheory.CategoryStruct.comp (δ i) u)) (σ_comp : ∀ {n m : } (u : mk m mk n) (i : Fin (m + 1)), P uP (CategoryTheory.CategoryStruct.comp (σ i) u)) {a b : SimplexCategoryGenRel} (f : a b) :
                          P f

                          An induction principle for reasonning about morphisms in SimplexCategoryGenRel, where we compose with generators on the right.

                          def SimplexCategoryGenRel.rec {P : SimplexCategoryGenRelSort u_1} (H : (n : ) → P (mk n)) (x : SimplexCategoryGenRel) :
                          P x

                          An induction principle for reasonning about objects in SimplexCategoryGenRel. This should be used instead of identifying an object with mk of its len.

                          Equations
                          Instances For
                            theorem SimplexCategoryGenRel.ext {x y : SimplexCategoryGenRel} (h : x.len = y.len) :
                            x = y

                            A basic ext lemma for objects of SimplexCategoryGenRel.

                            theorem SimplexCategoryGenRel.δ_comp_δ_nat {n : } (i j : ) (hi : i < n + 2) (hj : j < n + 2) (H : i j) :
                            CategoryTheory.CategoryStruct.comp (δ i, hi) (δ j + 1, ) = CategoryTheory.CategoryStruct.comp (δ j, hj) (δ i, )

                            A version of δ_comp_δ with indices in ℕ satisfying relevant inequalities.

                            theorem SimplexCategoryGenRel.σ_comp_σ_nat {n : } (i j : ) (hi : i < n + 1) (hj : j < n + 1) (H : i j) :
                            CategoryTheory.CategoryStruct.comp (σ i, ) (σ j, hj) = CategoryTheory.CategoryStruct.comp (σ j + 1, ) (σ i, hi)

                            A version of σ_comp_σ with indices in ℕ satisfying relevant inequalities.

                            The canonical functor from SimplexCategoryGenRel to SimplexCategory, which exists as the simplicial identities hold in SimplexCategory.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For