Documentation

Mathlib.AlgebraicTopology.SimplexCategory.Rev

The covariant involution of the simplex category #

In this file, we introduce the functor rev : SimplexCategorySimplexCategory which, via the equivalence between the simplex category and the category of nonempty finite linearly ordered types, corresponds to the covariant functor which sends a type α to αᵒᵈ.

The covariant involution rev : SimplexCategorySimplexCategory which, via the equivalence between the simplex category and the category of nonempty finite linearly ordered types, corresponds to the covariant functor which sends a type α to αᵒᵈ. This functor sends the object ⦋n⦌ to ⦋n⦌ and a map f : ⦋n⦌ ⟶ ⦋m⦌ is sent to the monotone map (i : Fin (n + 1)) ↦ (f i.rev).rev.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem SimplexCategory.rev_map_apply {n m : SimplexCategory} (f : n m) (i : Fin (n.len + 1)) :
    @[simp]
    theorem SimplexCategory.rev_map_δ {n : } (i : Fin (n + 2)) :
    rev.map (δ i) = δ i.rev
    @[simp]
    theorem SimplexCategory.rev_map_σ {n : } (i : Fin (n + 1)) :
    rev.map (σ i) = σ i.rev

    The functor SimplexCategory.rev : SimplexCategorySimplexCategory is a covariant involution.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]

      The functor SimplexCategory.rev : SimplexCategorySimplexCategory as an equivalence of category.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For