Documentation

Mathlib.AlgebraicTopology.SimplexCategory.Truncated

Properties of the truncated simplex category #

We prove that for n > 0, the inclusion functor from the n-truncated simplex category to the untruncated simplex category, and the inclusion functor from the n-truncated to the m-truncated simplex category, for n ≤ m are initial.

For 0 < n, the inclusion functor from the n-truncated simplex category to the untruncated simplex category is initial.

theorem SimplexCategory.Truncated.initial_incl {n m : } [NeZero n] (hm : n m) :
(incl n m hm).Initial

For 0 < n ≤ m, the inclusion functor from the n-truncated simplex category to the m-truncated simplex category is initial.

@[reducible, inline]
abbrev SimplexCategory.Truncated.δ (m : ) {n : } (i : Fin (n + 2)) (hn : (mk n).len m := by decide) (hn' : (mk (n + 1)).len m := by decide) :
{ obj := mk n, property := hn } { obj := mk (n + 1), property := hn' }

Abbreviation for face maps in the n-truncated simplex category.

Equations
Instances For
    @[reducible, inline]
    abbrev SimplexCategory.Truncated.σ (m : ) {n : } (i : Fin (n + 1)) (hn : (mk (n + 1)).len m := by decide) (hn' : (mk n).len m := by decide) :
    { obj := mk (n + 1), property := hn } { obj := mk n, property := hn' }

    Abbreviation for degeneracy maps in the n-truncated simplex category.

    Equations
    Instances For
      @[reducible, inline]
      abbrev SimplexCategory.Truncated.δ₂ {n : } (i : Fin (n + 2)) (hn : (mk n).len 2 := by decide) (hn' : (mk (n + 1)).len 2 := by decide) :
      { obj := mk n, property := hn } { obj := mk (n + 1), property := hn' }

      Abbreviation for face maps in the 2-truncated simplex category.

      Equations
      Instances For
        @[reducible, inline]
        abbrev SimplexCategory.Truncated.σ₂ {n : } (i : Fin (n + 1)) (hn : (mk (n + 1)).len 2 := by decide) (hn' : (mk n).len 2 := by decide) :
        { obj := mk (n + 1), property := hn } { obj := mk n, property := hn' }

        Abbreviation for face maps in the 2-truncated simplex category.

        Equations
        Instances For
          @[simp]
          theorem SimplexCategory.Truncated.δ₂_zero_comp_σ₂_zero {n : } (hn : (mk n).len 2 := by decide) (hn' : (mk (n + 1)).len 2 := by decide) :
          CategoryTheory.CategoryStruct.comp (δ₂ 0 hn hn') (σ₂ 0 hn' hn) = CategoryTheory.CategoryStruct.id { obj := mk n, property := hn }
          @[simp]
          theorem SimplexCategory.Truncated.δ₂_zero_comp_σ₂_zero_assoc {n : } (hn : (mk n).len 2 := by decide) (hn' : (mk (n + 1)).len 2 := by decide) {Z : CategoryTheory.ObjectProperty.FullSubcategory fun (a : SimplexCategory) => a.len 2} (h : { obj := mk n, property := hn } Z) :
          @[simp]
          theorem SimplexCategory.Truncated.δ₂_one_comp_σ₂_zero {n : } (hn : (mk n).len 2 := by decide) (hn' : (mk (n + 1)).len 2 := by decide) :
          CategoryTheory.CategoryStruct.comp (δ₂ 1 hn hn') (σ₂ 0 hn' hn) = CategoryTheory.CategoryStruct.id { obj := mk n, property := hn }
          @[simp]
          theorem SimplexCategory.Truncated.δ₂_one_comp_σ₂_zero_assoc {n : } (hn : (mk n).len 2 := by decide) (hn' : (mk (n + 1)).len 2 := by decide) {Z : CategoryTheory.ObjectProperty.FullSubcategory fun (a : SimplexCategory) => a.len 2} (h : { obj := mk n, property := hn } Z) :