Properties of the truncated simplex category #
We prove that for n > 0
, the inclusion functor from the n
-truncated simplex category to the
untruncated simplex category, and the inclusion functor from the n
-truncated to the m
-truncated
simplex category, for n ≤ m
are initial.
@[reducible, inline]
abbrev
SimplexCategory.Truncated.δ
(m : ℕ)
{n : ℕ}
(i : Fin (n + 2))
(hn : (mk n).len ≤ m := by decide)
(hn' : (mk (n + 1)).len ≤ m := by decide)
:
Abbreviation for face maps in the n
-truncated simplex category.
Equations
- SimplexCategory.Truncated.δ m i hn hn' = SimplexCategory.δ i
Instances For
@[reducible, inline]
abbrev
SimplexCategory.Truncated.σ
(m : ℕ)
{n : ℕ}
(i : Fin (n + 1))
(hn : (mk (n + 1)).len ≤ m := by decide)
(hn' : (mk n).len ≤ m := by decide)
:
Abbreviation for degeneracy maps in the n
-truncated simplex category.
Equations
- SimplexCategory.Truncated.σ m i hn hn' = SimplexCategory.σ i
Instances For
@[reducible, inline]
abbrev
SimplexCategory.Truncated.δ₂
{n : ℕ}
(i : Fin (n + 2))
(hn : (mk n).len ≤ 2 := by decide)
(hn' : (mk (n + 1)).len ≤ 2 := by decide)
:
Abbreviation for face maps in the 2-truncated simplex category.
Equations
- SimplexCategory.Truncated.δ₂ i hn hn' = SimplexCategory.Truncated.δ 2 i hn hn'
Instances For
@[reducible, inline]
abbrev
SimplexCategory.Truncated.σ₂
{n : ℕ}
(i : Fin (n + 1))
(hn : (mk (n + 1)).len ≤ 2 := by decide)
(hn' : (mk n).len ≤ 2 := by decide)
:
Abbreviation for face maps in the 2-truncated simplex category.
Equations
- SimplexCategory.Truncated.σ₂ i hn hn' = SimplexCategory.Truncated.σ 2 i hn hn'
Instances For
@[simp]
theorem
SimplexCategory.Truncated.δ₂_zero_comp_σ₂_zero_assoc
{n : ℕ}
(hn : (mk n).len ≤ 2 := by decide)
(hn' : (mk (n + 1)).len ≤ 2 := by decide)
{Z : CategoryTheory.ObjectProperty.FullSubcategory fun (a : SimplexCategory) => a.len ≤ 2}
(h : { obj := mk n, property := hn } ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (δ₂ 0 hn hn') (CategoryTheory.CategoryStruct.comp (σ₂ 0 hn' hn) h) = h
theorem
SimplexCategory.Truncated.δ₂_zero_comp_σ₂_one :
CategoryTheory.CategoryStruct.comp (δ₂ 0 ⋯ ⋯) (σ₂ 1 ⋯ ⋯) = CategoryTheory.CategoryStruct.comp (σ₂ 0 ⋯ ⋯) (δ₂ 0 ⋯ ⋯)
theorem
SimplexCategory.Truncated.δ₂_zero_comp_σ₂_one_assoc
{Z : CategoryTheory.ObjectProperty.FullSubcategory fun (a : SimplexCategory) => a.len ≤ 2}
(h : { obj := mk 1, property := ⋯ } ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (δ₂ 0 ⋯ ⋯) (CategoryTheory.CategoryStruct.comp (σ₂ 1 ⋯ ⋯) h) = CategoryTheory.CategoryStruct.comp (σ₂ 0 ⋯ ⋯) (CategoryTheory.CategoryStruct.comp (δ₂ 0 ⋯ ⋯) h)
@[simp]
theorem
SimplexCategory.Truncated.δ₂_one_comp_σ₂_zero_assoc
{n : ℕ}
(hn : (mk n).len ≤ 2 := by decide)
(hn' : (mk (n + 1)).len ≤ 2 := by decide)
{Z : CategoryTheory.ObjectProperty.FullSubcategory fun (a : SimplexCategory) => a.len ≤ 2}
(h : { obj := mk n, property := hn } ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (δ₂ 1 hn hn') (CategoryTheory.CategoryStruct.comp (σ₂ 0 hn' hn) h) = h
@[simp]
theorem
SimplexCategory.Truncated.δ₂_two_comp_σ₂_one :
CategoryTheory.CategoryStruct.comp (δ₂ 2 ⋯ ⋯) (σ₂ 1 ⋯ ⋯) = CategoryTheory.CategoryStruct.id { obj := mk 1, property := ⋯ }
@[simp]
theorem
SimplexCategory.Truncated.δ₂_two_comp_σ₂_one_assoc
{Z : CategoryTheory.ObjectProperty.FullSubcategory fun (a : SimplexCategory) => a.len ≤ 2}
(h : { obj := mk 1, property := ⋯ } ⟶ Z)
:
theorem
SimplexCategory.Truncated.δ₂_two_comp_σ₂_zero :
CategoryTheory.CategoryStruct.comp (δ₂ 2 ⋯ ⋯) (σ₂ 0 ⋯ ⋯) = CategoryTheory.CategoryStruct.comp (σ₂ 0 ⋯ ⋯) (δ₂ 1 ⋯ ⋯)
theorem
SimplexCategory.Truncated.δ₂_two_comp_σ₂_zero_assoc
{Z : CategoryTheory.ObjectProperty.FullSubcategory fun (a : SimplexCategory) => a.len ≤ 2}
(h : { obj := mk 1, property := ⋯ } ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (δ₂ 2 ⋯ ⋯) (CategoryTheory.CategoryStruct.comp (σ₂ 0 ⋯ ⋯) h) = CategoryTheory.CategoryStruct.comp (σ₂ 0 ⋯ ⋯) (CategoryTheory.CategoryStruct.comp (δ₂ 1 ⋯ ⋯) h)