Coskeletal simplicial objects #
The identity natural transformation exhibits a simplicial object X
as a right extension of its
restriction along (Truncated.inclusion n).op
recorded by rightExtensionInclusion X n
.
The simplicial object X
is n-coskeletal if rightExtensionInclusion X n
is a right Kan
extension.
When the ambient category admits right Kan extensions along (Truncated.inclusion n).op
,
then when X
is n
-coskeletal, the unit of coskAdj n
defines an isomorphism:
isoCoskOfIsCoskeletal : X ≅ (cosk n).obj X
.
TODO: Prove that X
is n
-coskeletal whenever a certain canonical cone is a limit cone.
The identity natural transformation exhibits a simplicial set as a right extension of its
restriction along (Truncated.inclusion n).op
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A simplicial object X
is n
-coskeletal when it is the right Kan extension of its restriction
along (Truncated.inclusion n).op
via the identity natural transformation.
- isRightKanExtension : CategoryTheory.Functor.IsRightKanExtension X (CategoryTheory.CategoryStruct.id ((SimplexCategory.Truncated.inclusion n).op.comp X))
Instances
If X
is n
-coskeletal, then Truncated.rightExtensionInclusion X n
is a terminal object in
the category RightExtension (Truncated.inclusion n).op (Truncated.inclusion.op ⋙ X)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The canonical isomorphism X ≅ (cosk n).obj X
defined when X
is coskeletal and the
n
-coskeleton functor exists.
Equations
- X.isoCoskOfIsCoskeletal n = CategoryTheory.asIso ((CategoryTheory.SimplicialObject.coskAdj n).unit.app X)