Documentation

Mathlib.AlgebraicTopology.SimplicialObject.Split

Split simplicial objects #

In this file, we introduce the notion of split simplicial object. If C is a category that has finite coproducts, a splitting s : Splitting X of a simplicial object X in C consists of the datum of a sequence of objects s.N : ℕ → C (which we shall refer to as "nondegenerate simplices") and a sequence of morphisms s.ι n : s.N n → X _[n] that have the property that a certain canonical map identifies X _[n] with the coproduct of objects s.N i indexed by all possible epimorphisms [n] ⟶ [i] in SimplexCategory. (We do not assume that the morphisms s.ι n are monomorphisms: in the most common categories, this would be a consequence of the axioms.)

Simplicial objects equipped with a splitting form a category SimplicialObject.Split C.

References #

The index set which appears in the definition of split simplicial objects.

Equations
Instances For

    The element in Splitting.IndexSet Δ attached to an epimorphism f : Δ ⟶ Δ'.

    Equations
    Instances For
      @[simp]

      The epimorphism in SimplexCategory associated to A : Splitting.IndexSet Δ

      Equations
      • A.e = A.snd
      Instances For
        theorem SimplicialObject.Splitting.IndexSet.ext' {Δ : SimplexCategoryᵒᵖ} (A : IndexSet Δ) :
        A = A.fst, A.e,
        theorem SimplicialObject.Splitting.IndexSet.ext {Δ : SimplexCategoryᵒᵖ} (A₁ A₂ : IndexSet Δ) (h₁ : A₁.fst = A₂.fst) (h₂ : CategoryTheory.CategoryStruct.comp A₁.e (CategoryTheory.eqToHom ) = A₂.e) :
        A₁ = A₂
        Equations
        • One or more equations did not get rendered due to their size.

        The distinguished element in Splitting.IndexSet Δ which corresponds to the identity of Δ.

        Equations
        Instances For

          The condition that an element Splitting.IndexSet Δ is the distinguished element Splitting.IndexSet.Id Δ.

          Equations
          Instances For
            def SimplicialObject.Splitting.IndexSet.epiComp {Δ₁ Δ₂ : SimplexCategoryᵒᵖ} (A : IndexSet Δ₁) (p : Δ₁ Δ₂) [CategoryTheory.Epi p.unop] :
            IndexSet Δ₂

            Given A : IndexSet Δ₁, if p.unop : unop Δ₂ ⟶ unop Δ₁ is an epi, this is the obvious element in A : IndexSet Δ₂ associated to the composition of epimorphisms p.unop ≫ A.e.

            Equations
            Instances For
              @[simp]
              theorem SimplicialObject.Splitting.IndexSet.epiComp_snd_coe {Δ₁ Δ₂ : SimplexCategoryᵒᵖ} (A : IndexSet Δ₁) (p : Δ₁ Δ₂) [CategoryTheory.Epi p.unop] :
              (A.epiComp p).snd = CategoryTheory.CategoryStruct.comp p.unop A.e
              @[simp]
              theorem SimplicialObject.Splitting.IndexSet.epiComp_fst {Δ₁ Δ₂ : SimplexCategoryᵒᵖ} (A : IndexSet Δ₁) (p : Δ₁ Δ₂) [CategoryTheory.Epi p.unop] :
              (A.epiComp p).fst = A.fst

              When A : IndexSet Δ and θ : Δ → Δ' is a morphism in SimplexCategoryᵒᵖ, an element in IndexSet Δ' can be defined by using the epi-mono factorisation of θ.unop ≫ A.e.

              Equations
              Instances For
                def SimplicialObject.Splitting.summand {C : Type u_1} (N : C) (Δ : SimplexCategoryᵒᵖ) (A : IndexSet Δ) :
                C

                Given a sequences of objects N : ℕ → C in a category C, this is a family of objects indexed by the elements A : Splitting.IndexSet Δ. The Δ-simplices of a split simplicial objects shall identify to the coproduct of objects in such a family.

                Equations
                Instances For

                  The cofan for summand N Δ induced by morphisms N n ⟶ X_ [n] for all n : ℕ.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    A splitting of a simplicial object X consists of the datum of a sequence of objects N, a sequence of morphisms ι : N n ⟶ X _[n] such that for all Δ : SimplexCategoryᵒᵖ, the canonical map Splitting.map X ι Δ is an isomorphism.

                    Instances For

                      The cofan for summand s.N Δ induced by a splitting of a simplicial object.

                      Equations
                      Instances For

                        The cofan s.cofan Δ is colimit.

                        Equations
                        • s.isColimit Δ = s.isColimit' Δ
                        Instances For

                          As it is stated in Splitting.hom_ext, a morphism f : X ⟶ Y from a split simplicial object to any simplicial object is determined by its restrictions s.φ f n : s.N n ⟶ Y _[n] to the distinguished summands in each degree n.

                          Equations
                          Instances For
                            theorem SimplicialObject.Splitting.hom_ext' {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : CategoryTheory.SimplicialObject C} (s : Splitting X) {Z : C} {Δ : SimplexCategoryᵒᵖ} (f g : X.obj Δ Z) (h : ∀ (A : IndexSet Δ), CategoryTheory.CategoryStruct.comp ((s.cofan Δ).inj A) f = CategoryTheory.CategoryStruct.comp ((s.cofan Δ).inj A) g) :
                            f = g
                            theorem SimplicialObject.Splitting.hom_ext {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : CategoryTheory.SimplicialObject C} (s : Splitting X) (f g : X Y) (h : ∀ (n : ), s f n = s g n) :
                            f = g
                            def SimplicialObject.Splitting.desc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : CategoryTheory.SimplicialObject C} (s : Splitting X) {Z : C} (Δ : SimplexCategoryᵒᵖ) (F : (A : IndexSet Δ) → s.N (Opposite.unop A.fst).len Z) :
                            X.obj Δ Z

                            The map X.obj Δ ⟶ Z obtained by providing a family of morphisms on all the terms of decomposition given by a splitting s : Splitting X

                            Equations
                            Instances For
                              @[simp]
                              theorem SimplicialObject.Splitting.ι_desc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : CategoryTheory.SimplicialObject C} (s : Splitting X) {Z : C} (Δ : SimplexCategoryᵒᵖ) (F : (A : IndexSet Δ) → s.N (Opposite.unop A.fst).len Z) (A : IndexSet Δ) :
                              CategoryTheory.CategoryStruct.comp ((s.cofan Δ).inj A) (s.desc Δ F) = F A
                              @[simp]
                              theorem SimplicialObject.Splitting.ι_desc_assoc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : CategoryTheory.SimplicialObject C} (s : Splitting X) {Z : C} (Δ : SimplexCategoryᵒᵖ) (F : (A : IndexSet Δ) → s.N (Opposite.unop A.fst).len Z) (A : IndexSet Δ) {Z✝ : C} (h : Z Z✝) :

                              A simplicial object that is isomorphic to a split simplicial object is split.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem SimplicialObject.Splitting.ofIso_N {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : CategoryTheory.SimplicialObject C} (s : Splitting X) (e : X Y) (a✝ : ) :
                                (s.ofIso e).N a✝ = s.N a✝
                                @[simp]
                                theorem SimplicialObject.Splitting.ofIso_isColimit' {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : CategoryTheory.SimplicialObject C} (s : Splitting X) (e : X Y) (Δ : SimplexCategoryᵒᵖ) :
                                (s.ofIso e).isColimit' Δ = (s.isColimit Δ).ofIsoColimit (CategoryTheory.Limits.Cofan.ext (e.app Δ) )
                                theorem SimplicialObject.Splitting.cofan_inj_epi_naturality {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : CategoryTheory.SimplicialObject C} (s : Splitting X) {Δ₁ Δ₂ : SimplexCategoryᵒᵖ} (A : IndexSet Δ₁) (p : Δ₁ Δ₂) [CategoryTheory.Epi p.unop] :
                                CategoryTheory.CategoryStruct.comp ((s.cofan Δ₁).inj A) (X.map p) = (s.cofan Δ₂).inj (A.epiComp p)
                                theorem SimplicialObject.Splitting.cofan_inj_epi_naturality_assoc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : CategoryTheory.SimplicialObject C} (s : Splitting X) {Δ₁ Δ₂ : SimplexCategoryᵒᵖ} (A : IndexSet Δ₁) (p : Δ₁ Δ₂) [CategoryTheory.Epi p.unop] {Z : C} (h : X.obj Δ₂ Z) :
                                CategoryTheory.CategoryStruct.comp ((s.cofan Δ₁).inj A) (CategoryTheory.CategoryStruct.comp (X.map p) h) = CategoryTheory.CategoryStruct.comp ((s.cofan Δ₂).inj (A.epiComp p)) h

                                The category SimplicialObject.Split C is the category of simplicial objects in C equipped with a splitting, and morphisms are morphisms of simplicial objects which are compatible with the splittings.

                                Instances For
                                  theorem SimplicialObject.Split.ext {C : Type u_1} {inst✝ : CategoryTheory.Category.{u_2, u_1} C} {x y : Split C} (X : x.X = y.X) (s : HEq x.s y.s) :
                                  x = y

                                  The object in SimplicialObject.Split C attached to a splitting s : Splitting X of a simplicial object X.

                                  Equations
                                  Instances For
                                    structure SimplicialObject.Split.Hom {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (S₁ S₂ : Split C) :
                                    Type u_2

                                    Morphisms in SimplicialObject.Split C are morphisms of simplicial objects that are compatible with the splittings.

                                    Instances For
                                      theorem SimplicialObject.Split.Hom.ext {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} (Φ₁ Φ₂ : S₁.Hom S₂) (h : ∀ (n : ), Φ₁.f n = Φ₂.f n) :
                                      Φ₁ = Φ₂
                                      theorem SimplicialObject.Split.hom_ext {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} (Φ₁ Φ₂ : S₁ S₂) (h : ∀ (n : ), Φ₁.f n = Φ₂.f n) :
                                      Φ₁ = Φ₂
                                      theorem SimplicialObject.Split.congr_F {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} {Φ₁ Φ₂ : S₁ S₂} (h : Φ₁ = Φ₂) :
                                      Φ₁.f = Φ₂.f
                                      theorem SimplicialObject.Split.congr_f {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} {Φ₁ Φ₂ : S₁ S₂} (h : Φ₁ = Φ₂) (n : ) :
                                      Φ₁.f n = Φ₂.f n
                                      @[simp]
                                      theorem SimplicialObject.Split.comp_F {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ S₃ : Split C} (Φ₁₂ : S₁ S₂) (Φ₂₃ : S₂ S₃) :
                                      (CategoryTheory.CategoryStruct.comp Φ₁₂ Φ₂₃).F = CategoryTheory.CategoryStruct.comp Φ₁₂.F Φ₂₃.F
                                      @[simp]
                                      theorem SimplicialObject.Split.comp_f {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ S₃ : Split C} (Φ₁₂ : S₁ S₂) (Φ₂₃ : S₂ S₃) (n : ) :
                                      (CategoryTheory.CategoryStruct.comp Φ₁₂ Φ₂₃).f n = CategoryTheory.CategoryStruct.comp (Φ₁₂.f n) (Φ₂₃.f n)
                                      @[simp]
                                      theorem SimplicialObject.Split.cofan_inj_naturality_symm {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} (Φ : S₁ S₂) {Δ : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) :
                                      CategoryTheory.CategoryStruct.comp ((S₁.s.cofan Δ).inj A) (Φ.F.app Δ) = CategoryTheory.CategoryStruct.comp (Φ.f (Opposite.unop A.fst).len) ((S₂.s.cofan Δ).inj A)
                                      @[simp]
                                      theorem SimplicialObject.Split.cofan_inj_naturality_symm_assoc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {S₁ S₂ : Split C} (Φ : S₁ S₂) {Δ : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) {Z : C} (h : S₂.X.obj Δ Z) :

                                      The functor SimplicialObject.Split C ⥤ SimplicialObject C which forgets the splitting.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem SimplicialObject.Split.forget_map (C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] {X✝ Y✝ : Split C} (Φ : X✝ Y✝) :
                                        (forget C).map Φ = Φ.F

                                        The functor SimplicialObject.Split C ⥤ C which sends a simplicial object equipped with a splitting to its nondegenerate n-simplices.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem SimplicialObject.Split.evalN_map (C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] (n : ) {X✝ Y✝ : Split C} (Φ : X✝ Y✝) :
                                          (evalN C n).map Φ = Φ.f n
                                          @[simp]
                                          theorem SimplicialObject.Split.evalN_obj (C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] (n : ) (S : Split C) :
                                          (evalN C n).obj S = S.s.N n

                                          The inclusion of each summand in the coproduct decomposition of simplices in split simplicial objects is a natural transformation of functors SimplicialObject.Split C ⥤ C

                                          Equations
                                          Instances For