Documentation

Mathlib.AlgebraicTopology.SimplicialSet.AnodyneExtensions.RankNat

Existence of a rank function to natural numbers #

In this file, we show that if P : A.Pairing is a regular pairing of subcomplex A of a simplicial set X, then there exists a rank function for P with values in .

noncomputable def SSet.Subcomplex.Pairing.rank' {X : SSet} {A : X.Subcomplex} (P : A.Pairing) {y : P.II} (hy : Acc P.AncestralRel y) :

Auxiliary definition for SSet.Subcomplex.Pairing.Rank.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem SSet.Subcomplex.Pairing.rank'_eq {X : SSet} {A : X.Subcomplex} (P : A.Pairing) {y : P.II} (hy : Acc P.AncestralRel y) :
    P.rank' hy = ⨆ (x : { x : P.II // P.AncestralRel x y }), P.rank' + 1
    theorem SSet.Subcomplex.Pairing.rank'_lt {X : SSet} {A : X.Subcomplex} (P : A.Pairing) {y : P.II} (hy : Acc P.AncestralRel y) {x : P.II} (r : P.AncestralRel x y) :
    P.rank' < P.rank' hy
    noncomputable def SSet.Subcomplex.Pairing.rank {X : SSet} {A : X.Subcomplex} (P : A.Pairing) [P.IsRegular] (x : P.II) :

    The rank function with values in relative to the well founded ancestrality relation of a regular pairing.

    Equations
    Instances For
      theorem SSet.Subcomplex.Pairing.rank_lt {X : SSet} {A : X.Subcomplex} {P : A.Pairing} [P.IsRegular] {x y : P.II} (h : P.AncestralRel x y) :
      P.rank x < P.rank y

      The canonical rank function with values in of a regular pairing.

      Equations
      Instances For