Existence of a rank function to natural numbers #
In this file, we show that if P : A.Pairing is
a regular pairing of subcomplex A of a simplicial set X,
then there exists a rank function for P with values in ℕ.
instance
SSet.Subcomplex.Pairing.instFiniteSubtypeElemNIIAncestralRel
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
(y : ↑P.II)
:
noncomputable def
SSet.Subcomplex.Pairing.rank'
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
{y : ↑P.II}
(hy : Acc P.AncestralRel y)
:
Auxiliary definition for SSet.Subcomplex.Pairing.Rank.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
SSet.Subcomplex.Pairing.rank'_eq
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
{y : ↑P.II}
(hy : Acc P.AncestralRel y)
:
theorem
SSet.Subcomplex.Pairing.rank'_lt
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
{y : ↑P.II}
(hy : Acc P.AncestralRel y)
{x : ↑P.II}
(r : P.AncestralRel x y)
:
theorem
SSet.Subcomplex.Pairing.rank_lt
{X : SSet}
{A : X.Subcomplex}
{P : A.Pairing}
[P.IsRegular]
{x y : ↑P.II}
(h : P.AncestralRel x y)
:
noncomputable def
SSet.Subcomplex.Pairing.rankFunction
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
[P.IsRegular]
:
The canonical rank function with values in ℕ of a regular pairing.
Equations
- P.rankFunction = { rank := P.rank, lt := ⋯ }
Instances For
instance
SSet.Subcomplex.Pairing.instNonemptyRankFunctionNat
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
[P.IsRegular]
:
Nonempty (P.RankFunction ℕ)
instance
SSet.Subcomplex.Pairing.instNonemptyWeakRankFunctionNat
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
[P.IsRegular]
:
theorem
SSet.Subcomplex.Pairing.isRegular_iff_nonempty_rankFunction
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
[P.IsProper]
:
theorem
SSet.Subcomplex.Pairing.isRegular_iff_nonempty_weakRankFunction
{X : SSet}
{A : X.Subcomplex}
(P : A.Pairing)
[P.IsProper]
: