Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Subcomplex

Subcomplexes of a simplicial set #

Given a simplicial set X, this file defines the type X.Subcomplex of subcomplexes of X as an abbreviation for Subpresheaf X. It also introduces a coercion from X.Subcomplex to SSet.

Implementation note #

SSet.{u} is defined as Cᵒᵖ ⥤ Type u, but it is not an abbreviation. This is the reason why Subpresheaf.ι is redefined here as Subcomplex.ι so that this morphism appears as a morphism in SSet instead of a morphism in the category of presheaves.

@[reducible, inline]
abbrev SSet.Subcomplex (X : SSet) :

The complete lattice of subcomplexes of a simplicial set.

Equations
Instances For
    @[reducible, inline]

    The underlying simplicial set of a subcomplex.

    Equations
    Instances For
      @[reducible, inline]
      abbrev SSet.Subcomplex.ι {X : SSet} (A : X.Subcomplex) :

      If A : Subcomplex X, this is the inclusion A ⟶ X in the category SSet.

      Equations
      Instances For
        @[reducible, inline]
        abbrev SSet.Subcomplex.homOfLE {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) :
        S₁.toSSet S₂.toSSet

        Given an inequality S₁ ≤ S₂ between subcomplexes of a simplicial set, this is the induced morphism in the category SSet.

        Equations
        Instances For
          theorem SSet.Subcomplex.homOfLE_comp {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) {S₃ : X.Subcomplex} (h' : S₂ S₃) :
          theorem SSet.Subcomplex.homOfLE_comp_assoc {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) {S₃ : X.Subcomplex} (h' : S₂ S₃) {Z : SSet} (h✝ : S₃.toSSet Z) :
          @[simp]
          theorem SSet.Subcomplex.homOfLE_app_val {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) (Δ : SimplexCategoryᵒᵖ) (x : (S₁.obj Δ)) :
          ((homOfLE h).app Δ x) = x
          @[simp]
          theorem SSet.Subcomplex.homOfLE_ι {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) :
          instance SSet.Subcomplex.mono_homOfLE {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) :
          def SSet.Subcomplex.eqToIso {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ = S₂) :
          S₁.toSSet S₂.toSSet

          This is the isomorphism of simplicial sets corresponding to an equality of subcomplexes.

          Equations
          Instances For
            @[simp]
            theorem SSet.Subcomplex.eqToIso_hom {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ = S₂) :
            @[simp]
            theorem SSet.Subcomplex.eqToIso_inv {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ = S₂) :

            The functor which sends A : X.Subcomplex to A.toSSet.

            Equations
            Instances For
              @[simp]
              theorem SSet.Subcomplex.toSSetFunctor_map {X : SSet} {X✝ Y✝ : X.Subcomplex} (h : X✝ Y✝) :

              If X : SSet, this is the isomorphism of simplicial sets from ⊤ : X.Subcomplex to X.

              Equations
              Instances For
                @[simp]
                theorem SSet.Subcomplex.topIso_inv_app_coe (X : SSet) (X✝ : SimplexCategoryᵒᵖ) (a✝ : X.obj X✝) :
                ((topIso X).inv.app X✝ a✝) = a✝
                Equations
                • One or more equations did not get rendered due to their size.

                If X is a simplicial set, then the empty subcomplex of X is an initial object in SSet.

                Equations
                Instances For
                  @[reducible, inline]

                  The subcomplex of a simplicial set that is generated by a simplex.

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev SSet.Subcomplex.range {X Y : SSet} (f : X Y) :

                    The range of a morphism of simplicial sets, as a subcomplex.

                    Equations
                    Instances For
                      @[reducible, inline]
                      abbrev SSet.Subcomplex.toRange {X Y : SSet} (f : X Y) :

                      The morphism X ⟶ Subcomplex.range f induced by f : X ⟶ Y.

                      Equations
                      Instances For
                        @[simp]
                        theorem SSet.Subcomplex.toRange_app_val {X Y : SSet} (f : X Y) {Δ : SimplexCategoryᵒᵖ} (x : X.obj Δ) :
                        ((toRange f).app Δ x) = f.app Δ x
                        def SSet.Subcomplex.lift {X Y : SSet} (f : X Y) {B : Y.Subcomplex} (hf : range f B) :

                        Given a morphism of simplicial sets f : X ⟶ Y whose range is ≤ B for some B : Y.Subcomplex, this is the induced morphism X ⟶ B.

                        Equations
                        Instances For
                          @[simp]
                          theorem SSet.Subcomplex.lift_ι {X Y : SSet} (f : X Y) {B : Y.Subcomplex} (hf : range f B) :
                          @[simp]
                          theorem SSet.Subcomplex.lift_app_coe {X Y : SSet} (f : X Y) {B : Y.Subcomplex} (hf : range f B) {n : SimplexCategoryᵒᵖ} (x : X.obj n) :
                          ((lift f hf).app n x) = f.app n x
                          def SSet.Subcomplex.preimage {X Y : SSet} (A : X.Subcomplex) (p : Y X) :

                          The preimage of a subcomplex by a morphism of simplicial sets.

                          Equations
                          Instances For
                            @[simp]
                            theorem SSet.Subcomplex.preimage_obj {X Y : SSet} (A : X.Subcomplex) (p : Y X) (n : SimplexCategoryᵒᵖ) :
                            (A.preimage p).obj n = p.app n ⁻¹' A.obj n
                            @[simp]
                            theorem SSet.Subcomplex.preimage_max {X Y : SSet} (A B : X.Subcomplex) (p : Y X) :
                            (AB).preimage p = A.preimage pB.preimage p
                            @[simp]
                            theorem SSet.Subcomplex.preimage_min {X Y : SSet} (A B : X.Subcomplex) (p : Y X) :
                            (AB).preimage p = A.preimage pB.preimage p
                            @[simp]
                            theorem SSet.Subcomplex.preimage_iSup {X Y : SSet} {ι : Type u_1} (A : ιX.Subcomplex) (p : Y X) :
                            (⨆ (i : ι), A i).preimage p = ⨆ (i : ι), (A i).preimage p
                            @[simp]
                            theorem SSet.Subcomplex.preimage_iInf {X Y : SSet} {ι : Type u_1} (A : ιX.Subcomplex) (p : Y X) :
                            (⨅ (i : ι), A i).preimage p = ⨅ (i : ι), (A i).preimage p
                            def SSet.Subcomplex.image {X Y : SSet} (A : X.Subcomplex) (f : X Y) :

                            The image of a subcomplex by a morphism of simplicial sets.

                            Equations
                            Instances For
                              @[simp]
                              theorem SSet.Subcomplex.image_obj {X Y : SSet} (A : X.Subcomplex) (f : X Y) (i : SimplexCategoryᵒᵖ) :
                              (A.image f).obj i = f.app i '' A.obj i
                              theorem SSet.Subcomplex.image_le_iff {X Y : SSet} (A : X.Subcomplex) (f : X Y) (Z : Y.Subcomplex) :
                              A.image f Z A Z.preimage f
                              theorem SSet.Subcomplex.image_top {X Y : SSet} (f : X Y) :
                              theorem SSet.Subcomplex.image_comp {X Y : SSet} (A : X.Subcomplex) (f : X Y) {Z : SSet} (g : Y Z) :
                              theorem SSet.Subcomplex.range_comp {X Y : SSet} (f : X Y) {Z : SSet} (g : Y Z) :
                              theorem SSet.Subcomplex.image_iSup {X Y : SSet} {ι : Type u_1} (S : ιX.Subcomplex) (f : X Y) :
                              (⨆ (i : ι), S i).image f = ⨆ (i : ι), (S i).image f
                              @[simp]
                              theorem SSet.Subcomplex.preimage_range {X Y : SSet} (f : X Y) :
                              @[simp]
                              theorem SSet.Subcomplex.image_le_range {X Y : SSet} (A : X.Subcomplex) (f : X Y) :
                              def SSet.Subcomplex.toImage {X Y : SSet} (A : X.Subcomplex) (f : X Y) :

                              Given a morphism of simplicial sets f : X ⟶ Y and a subcomplex A of X, this is the induced morphism from A to A.image f.

                              Equations
                              Instances For
                                @[simp]
                                theorem SSet.Subcomplex.toImage_app_coe {X Y : SSet} (A : X.Subcomplex) (f : X Y) (U : SimplexCategoryᵒᵖ) (x : A.toSSet.obj U) :
                                ((A.toImage f).app U x) = f.app U x
                                theorem SSet.Subcomplex.image_monotone {X Y : SSet} (f : X Y) :
                                Monotone fun (S : X.Subcomplex) => S.image f
                                @[simp]
                                theorem SSet.Subcomplex.image_preimage_le {X Y : SSet} (B : X.Subcomplex) (f : Y X) :
                                (B.preimage f).image f B
                                def SSet.Subcomplex.fromPreimage {X Y : SSet} (A : X.Subcomplex) (p : Y X) :

                                Given a morphism of simplicial sets p : Y ⟶ X and A : X.Subcomplex, this is the induced morphism (A.preimage p : SSet) ⟶ (A : SSet).

                                Equations
                                Instances For
                                  @[simp]
                                  theorem SSet.Subcomplex.fromPreimage_app_coe {X Y : SSet} (A : X.Subcomplex) (p : Y X) (U : SimplexCategoryᵒᵖ) (x : (A.preimage p).toSSet.obj U) :
                                  ((A.fromPreimage p).app U x) = p.app U x