Documentation

Mathlib.Analysis.Analytic.CPolynomial

Properties of continuously polynomial functions #

We expand the API around continuously polynomial functions. Notably, we show that this class is stable under the usual operations (addition, subtraction, negation).

We also prove that continuous multilinear maps are continuously polynomial, and so are continuous linear maps into continuous multilinear maps. In particular, such maps are analytic.

theorem hasFiniteFPowerSeriesOnBall_const {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {c : F} {e : E} :
theorem hasFiniteFPowerSeriesAt_const {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {c : F} {e : E} :
HasFiniteFPowerSeriesAt (fun (x : E) => c) (constFormalMultilinearSeries 𝕜 E c) e 1
theorem CPolynomialAt_const {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {x : E} {v : F} :
CPolynomialAt 𝕜 (fun (x : E) => v) x
theorem CPolynomialOn_const {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {v : F} {s : Set E} :
CPolynomialOn 𝕜 (fun (x : E) => v) s
theorem HasFiniteFPowerSeriesOnBall.add {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {pf pg : FormalMultilinearSeries 𝕜 E F} {x : E} {r : ENNReal} {n m : } (hf : HasFiniteFPowerSeriesOnBall f pf x n r) (hg : HasFiniteFPowerSeriesOnBall g pg x m r) :
HasFiniteFPowerSeriesOnBall (f + g) (pf + pg) x (n m) r
theorem HasFiniteFPowerSeriesAt.add {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {pf pg : FormalMultilinearSeries 𝕜 E F} {x : E} {n m : } (hf : HasFiniteFPowerSeriesAt f pf x n) (hg : HasFiniteFPowerSeriesAt g pg x m) :
HasFiniteFPowerSeriesAt (f + g) (pf + pg) x (n m)
theorem CPolynomialAt.add {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {x : E} (hf : CPolynomialAt 𝕜 f x) (hg : CPolynomialAt 𝕜 g x) :
CPolynomialAt 𝕜 (f + g) x
theorem HasFiniteFPowerSeriesOnBall.neg {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {pf : FormalMultilinearSeries 𝕜 E F} {x : E} {r : ENNReal} {n : } (hf : HasFiniteFPowerSeriesOnBall f pf x n r) :
theorem HasFiniteFPowerSeriesAt.neg {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {pf : FormalMultilinearSeries 𝕜 E F} {x : E} {n : } (hf : HasFiniteFPowerSeriesAt f pf x n) :
theorem CPolynomialAt.neg {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {x : E} (hf : CPolynomialAt 𝕜 f x) :
CPolynomialAt 𝕜 (-f) x
theorem HasFiniteFPowerSeriesOnBall.sub {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {pf pg : FormalMultilinearSeries 𝕜 E F} {x : E} {r : ENNReal} {n m : } (hf : HasFiniteFPowerSeriesOnBall f pf x n r) (hg : HasFiniteFPowerSeriesOnBall g pg x m r) :
HasFiniteFPowerSeriesOnBall (f - g) (pf - pg) x (n m) r
theorem HasFiniteFPowerSeriesAt.sub {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {pf pg : FormalMultilinearSeries 𝕜 E F} {x : E} {n m : } (hf : HasFiniteFPowerSeriesAt f pf x n) (hg : HasFiniteFPowerSeriesAt g pg x m) :
HasFiniteFPowerSeriesAt (f - g) (pf - pg) x (n m)
theorem CPolynomialAt.sub {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {x : E} (hf : CPolynomialAt 𝕜 f x) (hg : CPolynomialAt 𝕜 g x) :
CPolynomialAt 𝕜 (f - g) x
theorem CPolynomialOn.add {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {s : Set E} (hf : CPolynomialOn 𝕜 f s) (hg : CPolynomialOn 𝕜 g s) :
CPolynomialOn 𝕜 (f + g) s
theorem CPolynomialOn.sub {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f g : EF} {s : Set E} (hf : CPolynomialOn 𝕜 f s) (hg : CPolynomialOn 𝕜 g s) :
CPolynomialOn 𝕜 (f - g) s

Continuous multilinear maps #

We show that continuous multilinear maps are continuously polynomial, and therefore analytic.

theorem ContinuousMultilinearMap.hasFiniteFPowerSeriesOnBall {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) :
theorem ContinuousMultilinearMap.cpolynomialAt {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) {x : (i : ι) → Em i} :
CPolynomialAt 𝕜 (⇑f) x
theorem ContinuousMultilinearMap.cpolyomialOn {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) {s : Set ((i : ι) → Em i)} :
CPolynomialOn 𝕜 (⇑f) s
theorem ContinuousMultilinearMap.analyticOnNhd {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) {s : Set ((i : ι) → Em i)} :
AnalyticOnNhd 𝕜 (⇑f) s
theorem ContinuousMultilinearMap.analyticOn {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) {s : Set ((i : ι) → Em i)} :
AnalyticOn 𝕜 (⇑f) s
@[deprecated ContinuousMultilinearMap.analyticOn (since := "2024-09-26")]
theorem ContinuousMultilinearMap.analyticWithinOn {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) {s : Set ((i : ι) → Em i)} :
AnalyticOn 𝕜 (⇑f) s

Alias of ContinuousMultilinearMap.analyticOn.

theorem ContinuousMultilinearMap.analyticAt {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) {x : (i : ι) → Em i} :
AnalyticAt 𝕜 (⇑f) x
theorem ContinuousMultilinearMap.analyticWithinAt {𝕜 : Type u_1} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 Em F) {x : (i : ι) → Em i} {s : Set ((i : ι) → Em i)} :
AnalyticWithinAt 𝕜 (⇑f) s x

Continuous linear maps into continuous multilinear maps #

We show that a continuous linear map into continuous multilinear maps is continuously polynomial (as a function of two variables, i.e., uncurried). Therefore, it is also analytic.

noncomputable def ContinuousLinearMap.toFormalMultilinearSeriesOfMultilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) :
FormalMultilinearSeries 𝕜 (G × ((i : ι) → Em i)) F

Formal multilinear series associated to a linear map into multilinear maps.

Equations
Instances For
    theorem ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) :
    HasFiniteFPowerSeriesOnBall (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) f.toFormalMultilinearSeriesOfMultilinear 0 (Fintype.card (Option ι) + 1)
    theorem ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) {x : G × ((i : ι) → Em i)} :
    CPolynomialAt 𝕜 (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) x
    theorem ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) {s : Set (G × ((i : ι) → Em i))} :
    CPolynomialOn 𝕜 (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) s
    theorem ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) {s : Set (G × ((i : ι) → Em i))} :
    AnalyticOnNhd 𝕜 (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) s
    theorem ContinuousLinearMap.analyticOn_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) {s : Set (G × ((i : ι) → Em i))} :
    AnalyticOn 𝕜 (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) s
    @[deprecated ContinuousLinearMap.analyticOn_uncurry_of_multilinear (since := "2024-09-26")]
    theorem ContinuousLinearMap.analyticWithinOn_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) {s : Set (G × ((i : ι) → Em i))} :
    AnalyticOn 𝕜 (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) s

    Alias of ContinuousLinearMap.analyticOn_uncurry_of_multilinear.

    theorem ContinuousLinearMap.analyticAt_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) {x : G × ((i : ι) → Em i)} :
    AnalyticAt 𝕜 (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) x
    theorem ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear {𝕜 : Type u_1} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] {ι : Type u_5} {Em : ιType u_6} [(i : ι) → NormedAddCommGroup (Em i)] [(i : ι) → NormedSpace 𝕜 (Em i)] [Fintype ι] (f : G →L[𝕜] ContinuousMultilinearMap 𝕜 Em F) {s : Set (G × ((i : ι) → Em i))} {x : G × ((i : ι) → Em i)} :
    AnalyticWithinAt 𝕜 (fun (p : G × ((i : ι) → Em i)) => (f p.1) p.2) s x