Range of the continuous functional calculus #
This file contains results about the range of the continuous functional calculus, and consequences thereof.
Main results #
range_cfcHom
andrange_cfcₙHom
: forRCLike
scalar rings, the range of the continuous functional calculus homomorphism is the elemental subalgebra generated by the given element.range_cfc_nnreal
andrange_cfcₙ_nnreal
: over the scalar semiringℝ≥0
, the range of the continuous functional calculus consists of the nonnegative elements in the elementalℝ
-algebra generated by the given element.
theorem
range_cfcHom
(𝕜 : Type u_1)
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[Ring A]
[StarRing A]
[Algebra 𝕜 A]
[TopologicalSpace A]
[StarModule 𝕜 A]
[ContinuousFunctionalCalculus 𝕜 A p]
[IsTopologicalRing A]
[ContinuousStar A]
{a : A}
(ha : p a)
:
theorem
range_cfc
(𝕜 : Type u_1)
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[Ring A]
[StarRing A]
[Algebra 𝕜 A]
[TopologicalSpace A]
[StarModule 𝕜 A]
[ContinuousFunctionalCalculus 𝕜 A p]
[IsTopologicalRing A]
[ContinuousStar A]
{a : A}
(ha : p a)
:
theorem
cfcHom_apply_mem_elemental
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[Ring A]
[StarRing A]
[Algebra 𝕜 A]
[TopologicalSpace A]
[StarModule 𝕜 A]
[ContinuousFunctionalCalculus 𝕜 A p]
[IsTopologicalRing A]
[ContinuousStar A]
{a : A}
(ha : p a)
(f : C(↑(spectrum 𝕜 a), 𝕜))
:
@[simp]
theorem
cfc_apply_mem_elemental
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[Ring A]
[StarRing A]
[Algebra 𝕜 A]
[TopologicalSpace A]
[StarModule 𝕜 A]
[ContinuousFunctionalCalculus 𝕜 A p]
[IsTopologicalRing A]
[ContinuousStar A]
(f : 𝕜 → 𝕜)
(a : A)
:
theorem
range_cfc_nnreal_eq_image_cfc_real
{A : Type u_1}
[Ring A]
[StarRing A]
[Algebra ℝ A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[IsTopologicalRing A]
[T2Space A]
[PartialOrder A]
[NonnegSpectrumClass ℝ A]
[StarOrderedRing A]
(a : A)
(ha : 0 ≤ a)
:
theorem
range_cfc_nnreal
{A : Type u_1}
[Ring A]
[StarRing A]
[Algebra ℝ A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[IsTopologicalRing A]
[T2Space A]
[PartialOrder A]
[NonnegSpectrumClass ℝ A]
[StarOrderedRing A]
[ContinuousStar A]
[StarModule ℝ A]
(a : A)
(ha : 0 ≤ a)
:
theorem
range_cfcₙHom
(𝕜 : Type u_1)
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[StarRing A]
[Module 𝕜 A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
[ContinuousConstSMul 𝕜 A]
[StarModule 𝕜 A]
[IsTopologicalRing A]
[ContinuousStar A]
{a : A}
(ha : p a)
:
theorem
range_cfcₙ
(𝕜 : Type u_1)
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[StarRing A]
[Module 𝕜 A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
[ContinuousConstSMul 𝕜 A]
[StarModule 𝕜 A]
[IsTopologicalRing A]
[ContinuousStar A]
{a : A}
(ha : p a)
:
theorem
cfcₙHom_apply_mem_elemental
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[StarRing A]
[Module 𝕜 A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
[ContinuousConstSMul 𝕜 A]
[StarModule 𝕜 A]
[IsTopologicalRing A]
[ContinuousStar A]
{a : A}
(ha : p a)
(f : ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜)
:
@[simp]
theorem
cfcₙ_apply_mem_elemental
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[StarRing A]
[Module 𝕜 A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
[ContinuousConstSMul 𝕜 A]
[StarModule 𝕜 A]
[IsTopologicalRing A]
[ContinuousStar A]
(f : 𝕜 → 𝕜)
(a : A)
:
theorem
range_cfcₙ_nnreal_eq_image_cfcₙ_real
{A : Type u_1}
[NonUnitalRing A]
[StarRing A]
[Module ℝ A]
[IsScalarTower ℝ A A]
[SMulCommClass ℝ A A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[IsTopologicalRing A]
[T2Space A]
[PartialOrder A]
[NonnegSpectrumClass ℝ A]
[StarOrderedRing A]
(a : A)
(ha : 0 ≤ a)
:
theorem
range_cfcₙ_nnreal
{A : Type u_1}
[NonUnitalRing A]
[StarRing A]
[Module ℝ A]
[IsScalarTower ℝ A A]
[SMulCommClass ℝ A A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[IsTopologicalRing A]
[T2Space A]
[PartialOrder A]
[NonnegSpectrumClass ℝ A]
[StarOrderedRing A]
[StarModule ℝ A]
[ContinuousStar A]
[ContinuousConstSMul ℝ A]
(a : A)
(ha : 0 ≤ a)
: