Documentation

Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Range

Range of the continuous functional calculus #

This file contains results about the range of the continuous functional calculus, and consequences thereof.

Main results #

theorem range_cfcHom (𝕜 : Type u_1) {A : Type u_2} {p : AProp} [RCLike 𝕜] [Ring A] [StarRing A] [Algebra 𝕜 A] [TopologicalSpace A] [StarModule 𝕜 A] [ContinuousFunctionalCalculus 𝕜 A p] [IsTopologicalRing A] [ContinuousStar A] {a : A} (ha : p a) :
theorem range_cfc (𝕜 : Type u_1) {A : Type u_2} {p : AProp} [RCLike 𝕜] [Ring A] [StarRing A] [Algebra 𝕜 A] [TopologicalSpace A] [StarModule 𝕜 A] [ContinuousFunctionalCalculus 𝕜 A p] [IsTopologicalRing A] [ContinuousStar A] {a : A} (ha : p a) :
(Set.range fun (x : 𝕜𝕜) => cfc x a) = (StarAlgebra.elemental 𝕜 a)
theorem cfcHom_apply_mem_elemental {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [Ring A] [StarRing A] [Algebra 𝕜 A] [TopologicalSpace A] [StarModule 𝕜 A] [ContinuousFunctionalCalculus 𝕜 A p] [IsTopologicalRing A] [ContinuousStar A] {a : A} (ha : p a) (f : C((spectrum 𝕜 a), 𝕜)) :
@[simp]
theorem cfc_apply_mem_elemental {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [Ring A] [StarRing A] [Algebra 𝕜 A] [TopologicalSpace A] [StarModule 𝕜 A] [ContinuousFunctionalCalculus 𝕜 A p] [IsTopologicalRing A] [ContinuousStar A] (f : 𝕜𝕜) (a : A) :
theorem range_cfc_nnreal_eq_image_cfc_real {A : Type u_1} [Ring A] [StarRing A] [Algebra A] [TopologicalSpace A] [ContinuousFunctionalCalculus A IsSelfAdjoint] [IsTopologicalRing A] [T2Space A] [PartialOrder A] [NonnegSpectrumClass A] [StarOrderedRing A] (a : A) (ha : 0 a) :
(Set.range fun (x : NNRealNNReal) => cfc x a) = (fun (x : ) => cfc x a) '' {f : | xspectrum a, 0 f x}
theorem range_cfcₙHom (𝕜 : Type u_1) {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [StarRing A] [Module 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] [ContinuousConstSMul 𝕜 A] [StarModule 𝕜 A] [IsTopologicalRing A] [ContinuousStar A] {a : A} (ha : p a) :
theorem range_cfcₙ (𝕜 : Type u_1) {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [StarRing A] [Module 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] [ContinuousConstSMul 𝕜 A] [StarModule 𝕜 A] [IsTopologicalRing A] [ContinuousStar A] {a : A} (ha : p a) :
(Set.range fun (x : 𝕜𝕜) => cfcₙ x a) = (NonUnitalStarAlgebra.elemental 𝕜 a)
theorem cfcₙHom_apply_mem_elemental {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [StarRing A] [Module 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] [ContinuousConstSMul 𝕜 A] [StarModule 𝕜 A] [IsTopologicalRing A] [ContinuousStar A] {a : A} (ha : p a) (f : ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜) :
@[simp]
theorem cfcₙ_apply_mem_elemental {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [StarRing A] [Module 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] [ContinuousConstSMul 𝕜 A] [StarModule 𝕜 A] [IsTopologicalRing A] [ContinuousStar A] (f : 𝕜𝕜) (a : A) :