Documentation

Mathlib.Analysis.CStarAlgebra.Matrix

Analytic properties of the star operation on matrices #

This transports the operator norm on EuclideanSpace 𝕜 n →L[𝕜] EuclideanSpace 𝕜 m to Matrix m n 𝕜. See the file Analysis.Matrix for many other matrix norms.

Main definitions #

Main statements #

Implementation details #

We take care to ensure the topology and uniformity induced by Matrix.instMetricSpaceL2Op coincide with the existing topology and uniformity on matrices.

theorem entry_norm_bound_of_unitary {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] {U : Matrix n n 𝕜} (hU : U Matrix.unitaryGroup n 𝕜) (i j : n) :
U i j 1
theorem entrywise_sup_norm_bound_of_unitary {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] {U : Matrix n n 𝕜} (hU : U Matrix.unitaryGroup n 𝕜) :

The entrywise sup norm of a unitary matrix is at most 1.

def Matrix.toEuclideanCLM {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] :
Matrix n n 𝕜 ≃⋆ₐ[𝕜] EuclideanSpace 𝕜 n →L[𝕜] EuclideanSpace 𝕜 n

The natural star algebra equivalence between matrices and continuous linear endomorphisms of Euclidean space induced by the orthonormal basis EuclideanSpace.basisFun.

This is a more-bundled version of Matrix.toEuclideanLin, for the special case of square matrices, followed by a more-bundled version of LinearMap.toContinuousLinearMap.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Matrix.coe_toEuclideanCLM_eq_toEuclideanLin {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) :
    @[simp]
    theorem Matrix.toEuclideanCLM_toLp {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) (x : n𝕜) :
    @[deprecated Matrix.toEuclideanCLM_toLp (since := "2025-05-07")]
    theorem Matrix.toEuclideanCLM_piLp_equiv_symm {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) (x : n𝕜) :
    (toEuclideanCLM A) ((WithLp.equiv 2 ((i : n) → (fun (x : n) => 𝕜) i)).symm x) = (WithLp.equiv 2 (n𝕜)).symm (A.mulVec x)
    @[simp]
    theorem Matrix.ofLp_toEuclideanCLM {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) (x : EuclideanSpace 𝕜 n) :
    @[deprecated Matrix.ofLp_toEuclideanCLM (since := "2025-05-07")]
    theorem Matrix.piLp_equiv_toEuclideanCLM {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) (x : EuclideanSpace 𝕜 n) :
    (WithLp.equiv 2 ((i : n) → (fun (x : n) => 𝕜) i)) ((toEuclideanCLM A) x) = A.mulVec ((WithLp.equiv 2 (n𝕜)) x)
    def Matrix.l2OpNormedAddCommGroupAux {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] :

    An auxiliary definition used only to construct the true NormedAddCommGroup (and Metric) structure provided by Matrix.instMetricSpaceL2Op and Matrix.instNormedAddCommGroupL2Op.

    Equations
    Instances For
      def Matrix.l2OpNormedRingAux {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] :
      NormedRing (Matrix n n 𝕜)

      An auxiliary definition used only to construct the true NormedRing (and Metric) structure provided by Matrix.instMetricSpaceL2Op and Matrix.instNormedRingL2Op.

      Equations
      Instances For
        def Matrix.instL2OpMetricSpace {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] :
        MetricSpace (Matrix m n 𝕜)

        The metric on Matrix m n 𝕜 arising from the operator norm given by the identification with (continuous) linear maps of EuclideanSpace.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def Matrix.instL2OpNormedAddCommGroup {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] :

          The norm structure on Matrix m n 𝕜 arising from the operator norm given by the identification with (continuous) linear maps of EuclideanSpace.

          Equations
          Instances For
            theorem Matrix.l2_opNorm_conjTranspose {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] [DecidableEq m] (A : Matrix m n 𝕜) :
            theorem Matrix.l2_opNNNorm_conjTranspose {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] [DecidableEq m] (A : Matrix m n 𝕜) :
            theorem Matrix.l2_opNorm_conjTranspose_mul_self {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] (A : Matrix m n 𝕜) :
            theorem Matrix.l2_opNNNorm_conjTranspose_mul_self {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] (A : Matrix m n 𝕜) :
            theorem Matrix.l2_opNorm_mulVec {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] (A : Matrix m n 𝕜) (x : EuclideanSpace 𝕜 n) :
            theorem Matrix.l2_opNNNorm_mulVec {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] (A : Matrix m n 𝕜) (x : EuclideanSpace 𝕜 n) :
            theorem Matrix.l2_opNorm_mul {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} {l : Type u_4} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] [Fintype l] [DecidableEq l] (A : Matrix m n 𝕜) (B : Matrix n l 𝕜) :
            theorem Matrix.l2_opNNNorm_mul {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} {l : Type u_4} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] [Fintype l] [DecidableEq l] (A : Matrix m n 𝕜) (B : Matrix n l 𝕜) :
            theorem Matrix.l2_opNorm_toEuclideanCLM {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) :
            @[simp]
            theorem Matrix.l2_opNorm_diagonal {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (v : n𝕜) :
            @[simp]
            theorem Matrix.l2_opNNNorm_diagonal {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (v : n𝕜) :
            def Matrix.instL2OpNormedSpace {𝕜 : Type u_1} {m : Type u_2} {n : Type u_3} [RCLike 𝕜] [Fintype m] [Fintype n] [DecidableEq n] :
            NormedSpace 𝕜 (Matrix m n 𝕜)

            The normed algebra structure on Matrix n n 𝕜 arising from the operator norm given by the identification with (continuous) linear endmorphisms of EuclideanSpace 𝕜 n.

            Equations
            Instances For
              def Matrix.instL2OpNormedRing {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] :
              NormedRing (Matrix n n 𝕜)

              The normed ring structure on Matrix n n 𝕜 arising from the operator norm given by the identification with (continuous) linear endmorphisms of EuclideanSpace 𝕜 n.

              Equations
              Instances For
                theorem Matrix.cstar_norm_def {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) :

                This is the same as Matrix.l2_opNorm_def, but with a more bundled RHS for square matrices.

                theorem Matrix.cstar_nnnorm_def {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] (A : Matrix n n 𝕜) :

                This is the same as Matrix.l2_opNNNorm_def, but with a more bundled RHS for square matrices.

                def Matrix.instL2OpNormedAlgebra {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] :
                NormedAlgebra 𝕜 (Matrix n n 𝕜)

                The normed algebra structure on Matrix n n 𝕜 arising from the operator norm given by the identification with (continuous) linear endmorphisms of EuclideanSpace 𝕜 n.

                Equations
                Instances For
                  theorem Matrix.instCStarRing {𝕜 : Type u_1} {n : Type u_3} [RCLike 𝕜] [Fintype n] [DecidableEq n] :
                  CStarRing (Matrix n n 𝕜)

                  The operator norm on Matrix n n 𝕜 given by the identification with (continuous) linear endmorphisms of EuclideanSpace 𝕜 n makes it into a L2OpRing.