Documentation

Mathlib.Analysis.CStarAlgebra.lpSpace

lp ∞ A as a C⋆-algebra #

We place these here because, for reasons related to the import hierarchy, they should not be placed in earlier files.

Equations
  • instNonUnitalCStarAlgebraSubtypePreLpMemAddSubgroupLpTopENNReal = NonUnitalCStarAlgebra.mk
Equations
  • instNonUnitalCommCStarAlgebraSubtypePreLpMemAddSubgroupLpTopENNReal = NonUnitalCommCStarAlgebra.mk
instance instNormedRingSubtypePreLpMemAddSubgroupLpTopENNRealOfNontrivial {I : Type u_1} {A : IType u_2} [∀ (i : I), Nontrivial (A i)] [(i : I) → CStarAlgebra (A i)] :
Equations
  • instNormedRingSubtypePreLpMemAddSubgroupLpTopENNRealOfNontrivial = NormedRing.mk
instance instCommCStarAlgebraSubtypePreLpMemAddSubgroupLpTopENNRealOfNontrivial {I : Type u_1} {A : IType u_2} [∀ (i : I), Nontrivial (A i)] [(i : I) → CommCStarAlgebra (A i)] :
Equations
  • instCommCStarAlgebraSubtypePreLpMemAddSubgroupLpTopENNRealOfNontrivial = CommCStarAlgebra.mk