Documentation

Mathlib.Analysis.Normed.Lp.lpSpace

ℓp space #

This file describes properties of elements f of a pi-type ∀ i, E i with finite "norm", defined for p : ℝ≥0∞ as the size of the support of f if p=0, (∑' a, ‖f a‖^p) ^ (1/p) for 0 < p < ∞ and ⨆ a, ‖f a‖ for p=∞.

The Prop-valued Memℓp f p states that a function f : ∀ i, E i has finite norm according to the above definition; that is, f has finite support if p = 0, Summable (fun a ↦ ‖f a‖^p) if 0 < p < ∞, and BddAbove (norm '' (Set.range f)) if p = ∞.

The space lp E p is the subtype of elements of ∀ i : α, E i which satisfy Memℓp f p. For 1 ≤ p, the "norm" is genuinely a norm and lp is a complete metric space.

Main definitions #

Main results #

Implementation #

Since lp is defined as an AddSubgroup, dot notation does not work. Use lp.norm_neg f to say that ‖-f‖ = ‖f‖, instead of the non-working f.norm_neg.

TODO #

Memℓp predicate #

def Memℓp {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] (f : (i : α) → E i) (p : ENNReal) :

The property that f : ∀ i : α, E i

  • is finitely supported, if p = 0, or
  • admits an upper bound for Set.range (fun i ↦ ‖f i‖), if p = ∞, or
  • has the series ∑' i, ‖f i‖ ^ p be summable, if 0 < p < ∞.
Equations
Instances For
    theorem memℓp_zero_iff {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} :
    Memℓp f 0 {i : α | f i 0}.Finite
    theorem memℓp_zero {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : {i : α | f i 0}.Finite) :
    theorem memℓp_infty_iff {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} :
    Memℓp f BddAbove (Set.range fun (i : α) => f i)
    theorem memℓp_infty {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : BddAbove (Set.range fun (i : α) => f i)) :
    theorem memℓp_gen_iff {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) {f : (i : α) → E i} :
    Memℓp f p Summable fun (i : α) => f i ^ p.toReal
    theorem memℓp_gen {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Summable fun (i : α) => f i ^ p.toReal) :
    theorem memℓp_gen' {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {C : } {f : (i : α) → E i} (hf : ∀ (s : Finset α), is, f i ^ p.toReal C) :
    theorem zero_memℓp {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
    theorem zero_mem_ℓp' {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
    Memℓp (fun (i : α) => 0) p
    theorem Memℓp.finite_dsupport {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f 0) :
    {i : α | f i 0}.Finite
    theorem Memℓp.bddAbove {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f ) :
    BddAbove (Set.range fun (i : α) => f i)
    theorem Memℓp.summable {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) {f : (i : α) → E i} (hf : Memℓp f p) :
    Summable fun (i : α) => f i ^ p.toReal
    theorem Memℓp.neg {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f p) :
    Memℓp (-f) p
    @[simp]
    theorem Memℓp.neg_iff {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} :
    Memℓp (-f) p Memℓp f p
    theorem Memℓp.of_exponent_ge {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {p q : ENNReal} {f : (i : α) → E i} (hfq : Memℓp f q) (hpq : q p) :
    theorem Memℓp.add {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f g : (i : α) → E i} (hf : Memℓp f p) (hg : Memℓp g p) :
    Memℓp (f + g) p
    theorem Memℓp.sub {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f g : (i : α) → E i} (hf : Memℓp f p) (hg : Memℓp g p) :
    Memℓp (f - g) p
    theorem Memℓp.finset_sum {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_5} (s : Finset ι) {f : ι(i : α) → E i} (hf : is, Memℓp (f i) p) :
    Memℓp (fun (a : α) => is, f i a) p
    theorem Memℓp.const_smul {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] {f : (i : α) → E i} (hf : Memℓp f p) (c : 𝕜) :
    Memℓp (c f) p
    theorem Memℓp.const_mul {𝕜 : Type u_1} {α : Type u_3} {p : ENNReal} [NormedRing 𝕜] {f : α𝕜} (hf : Memℓp f p) (c : 𝕜) :
    Memℓp (fun (x : α) => c * f x) p

    lp space #

    The space of elements of ∀ i, E i satisfying the predicate Memℓp.

    def PreLp {α : Type u_3} (E : αType u_5) [(i : α) → NormedAddCommGroup (E i)] :
    Type (max u_3 u_5)

    We define PreLp E to be a type synonym for ∀ i, E i which, importantly, does not inherit the pi topology on ∀ i, E i (otherwise this topology would descend to lp E p and conflict with the normed group topology we will later equip it with.)

    We choose to deal with this issue by making a type synonym for ∀ i, E i rather than for the lp subgroup itself, because this allows all the spaces lp E p (for varying p) to be subgroups of the same ambient group, which permits lemma statements like lp.monotone (below).

    Equations
    Instances For
      instance instAddCommGroupPreLp {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] :
      Equations
      instance PreLp.unique {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [IsEmpty α] :
      Equations
      def lp {α : Type u_3} (E : αType u_5) [(i : α) → NormedAddCommGroup (E i)] (p : ENNReal) :

      lp space The p=∞ case has notation ℓ^∞(ι, E) resp. ℓ^∞(ι) (for E = ℝ) in the lp namespace.

      Equations
      • lp E p = { carrier := {f : PreLp E | Memℓp f p}, add_mem' := , zero_mem' := , neg_mem' := }
      Instances For

        lp space The p=∞ case has notation ℓ^∞(ι, E) resp. ℓ^∞(ι) (for E = ℝ) in the lp namespace.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          lp space The p=∞ case has notation ℓ^∞(ι, E) resp. ℓ^∞(ι) (for E = ℝ) in the lp namespace.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            instance lp.instCoeOutSubtypePreLpMemAddSubgroupForall {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
            CoeOut (↥(lp E p)) ((i : α) → E i)
            Equations
            instance lp.coeFun {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
            CoeFun (lp E p) fun (x : (lp E p)) => (i : α) → E i
            Equations
            theorem lp.ext {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f g : (lp E p)} (h : f = g) :
            f = g
            theorem lp.eq_zero' {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [IsEmpty α] (f : (lp E p)) :
            f = 0
            theorem lp.monotone {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {p q : ENNReal} (hpq : q p) :
            lp E q lp E p
            theorem lp.memℓp {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : (lp E p)) :
            Memℓp (↑f) p
            @[simp]
            theorem lp.coeFn_zero {α : Type u_3} (E : αType u_4) (p : ENNReal) [(i : α) → NormedAddCommGroup (E i)] :
            0 = 0
            @[simp]
            theorem lp.coeFn_neg {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : (lp E p)) :
            ↑(-f) = -f
            @[simp]
            theorem lp.coeFn_add {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f g : (lp E p)) :
            ↑(f + g) = f + g
            def lp.coeFnAddMonoidHom {α : Type u_3} (E : αType u_4) (p : ENNReal) [(i : α) → NormedAddCommGroup (E i)] :
            (lp E p) →+ (i : α) → E i

            Coercion to function as an AddMonoidHom.

            Equations
            Instances For
              @[simp]
              theorem lp.coeFnAddMonoidHom_apply {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (x : (lp E p)) :
              (coeFnAddMonoidHom E p) x = x
              theorem lp.coeFn_sum {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_5} (f : ι(lp E p)) (s : Finset ι) :
              (∑ is, f i) = is, (f i)
              @[simp]
              theorem lp.coeFn_sub {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f g : (lp E p)) :
              ↑(f - g) = f - g
              instance lp.instNormSubtypePreLpMemAddSubgroup {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
              Norm (lp E p)
              Equations
              • One or more equations did not get rendered due to their size.
              theorem lp.norm_eq_card_dsupport {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] (f : (lp E 0)) :
              theorem lp.norm_eq_ciSup {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] (f : (lp E )) :
              f = ⨆ (i : α), f i
              theorem lp.isLUB_norm {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [Nonempty α] (f : (lp E )) :
              IsLUB (Set.range fun (i : α) => f i) f
              theorem lp.norm_eq_tsum_rpow {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) (f : (lp E p)) :
              f = (∑' (i : α), f i ^ p.toReal) ^ (1 / p.toReal)
              theorem lp.norm_rpow_eq_tsum {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) (f : (lp E p)) :
              f ^ p.toReal = ∑' (i : α), f i ^ p.toReal
              theorem lp.hasSum_norm {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) (f : (lp E p)) :
              HasSum (fun (i : α) => f i ^ p.toReal) (f ^ p.toReal)
              theorem lp.norm_nonneg' {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : (lp E p)) :
              @[simp]
              theorem lp.norm_zero {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
              theorem lp.norm_eq_zero_iff {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (lp E p)} :
              f = 0 f = 0
              theorem lp.eq_zero_iff_coeFn_eq_zero {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (lp E p)} :
              f = 0 f = 0
              @[simp]
              theorem lp.norm_neg {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] ⦃f : (lp E p) :
              instance lp.normedAddCommGroup {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [hp : Fact (1 p)] :
              Equations
              theorem lp.tsum_mul_le_mul_norm {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {p q : ENNReal} (hpq : p.toReal.IsConjExponent q.toReal) (f : (lp E p)) (g : (lp E q)) :
              (Summable fun (i : α) => f i * g i) ∑' (i : α), f i * g i f * g

              Hölder inequality

              theorem lp.summable_mul {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {p q : ENNReal} (hpq : p.toReal.IsConjExponent q.toReal) (f : (lp E p)) (g : (lp E q)) :
              Summable fun (i : α) => f i * g i
              theorem lp.tsum_mul_le_mul_norm' {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {p q : ENNReal} (hpq : p.toReal.IsConjExponent q.toReal) (f : (lp E p)) (g : (lp E q)) :
              ∑' (i : α), f i * g i f * g
              theorem lp.norm_apply_le_norm {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : p 0) (f : (lp E p)) (i : α) :
              theorem lp.sum_rpow_le_norm_rpow {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) (f : (lp E p)) (s : Finset α) :
              is, f i ^ p.toReal f ^ p.toReal
              theorem lp.norm_le_of_forall_le' {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [Nonempty α] {f : (lp E )} (C : ) (hCf : ∀ (i : α), f i C) :
              theorem lp.norm_le_of_forall_le {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {f : (lp E )} {C : } (hC : 0 C) (hCf : ∀ (i : α), f i C) :
              theorem lp.norm_le_of_tsum_le {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) {C : } (hC : 0 C) {f : (lp E p)} (hf : ∑' (i : α), f i ^ p.toReal C ^ p.toReal) :
              theorem lp.norm_le_of_forall_sum_le {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < p.toReal) {C : } (hC : 0 C) {f : (lp E p)} (hf : ∀ (s : Finset α), is, f i ^ p.toReal C ^ p.toReal) :
              instance lp.instModulePreLp {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] :
              Module 𝕜 (PreLp E)
              Equations
              instance lp.instSMulCommClassPreLp {𝕜 : Type u_1} {𝕜' : Type u_2} {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [NormedRing 𝕜'] [(i : α) → Module 𝕜 (E i)] [(i : α) → Module 𝕜' (E i)] [∀ (i : α), SMulCommClass 𝕜' 𝕜 (E i)] :
              SMulCommClass 𝕜' 𝕜 (PreLp E)
              instance lp.instIsScalarTowerPreLp {𝕜 : Type u_1} {𝕜' : Type u_2} {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [NormedRing 𝕜'] [(i : α) → Module 𝕜 (E i)] [(i : α) → Module 𝕜' (E i)] [SMul 𝕜' 𝕜] [∀ (i : α), IsScalarTower 𝕜' 𝕜 (E i)] :
              IsScalarTower 𝕜' 𝕜 (PreLp E)
              instance lp.instIsCentralScalarPreLp {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [(i : α) → Module 𝕜ᵐᵒᵖ (E i)] [∀ (i : α), IsCentralScalar 𝕜 (E i)] :
              theorem lp.mem_lp_const_smul {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (c : 𝕜) (f : (lp E p)) :
              c f lp E p
              def lpSubmodule (𝕜 : Type u_1) {α : Type u_3} (E : αType u_4) (p : ENNReal) [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] :
              Submodule 𝕜 (PreLp E)

              The 𝕜-submodule of elements of ∀ i : α, E i whose lp norm is finite. This is lp E p, with extra structure.

              Equations
              Instances For
                theorem lp.coe_lpSubmodule {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] :
                (lpSubmodule 𝕜 E p).toAddSubgroup = lp E p
                instance lp.instModuleSubtypePreLpMemAddSubgroup {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] :
                Module 𝕜 (lp E p)
                Equations
                @[simp]
                theorem lp.coeFn_smul {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (c : 𝕜) (f : (lp E p)) :
                ↑(c f) = c f
                instance lp.instSMulCommClassSubtypePreLpMemAddSubgroup {𝕜 : Type u_1} {𝕜' : Type u_2} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [NormedRing 𝕜'] [(i : α) → Module 𝕜 (E i)] [(i : α) → Module 𝕜' (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜' (E i)] [∀ (i : α), SMulCommClass 𝕜' 𝕜 (E i)] :
                SMulCommClass 𝕜' 𝕜 (lp E p)
                instance lp.instIsScalarTowerSubtypePreLpMemAddSubgroup {𝕜 : Type u_1} {𝕜' : Type u_2} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [NormedRing 𝕜'] [(i : α) → Module 𝕜 (E i)] [(i : α) → Module 𝕜' (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜' (E i)] [SMul 𝕜' 𝕜] [∀ (i : α), IsScalarTower 𝕜' 𝕜 (E i)] :
                IsScalarTower 𝕜' 𝕜 (lp E p)
                instance lp.instIsCentralScalarSubtypePreLpMemAddSubgroup {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [(i : α) → Module 𝕜ᵐᵒᵖ (E i)] [∀ (i : α), IsCentralScalar 𝕜 (E i)] :
                IsCentralScalar 𝕜 (lp E p)
                theorem lp.norm_const_smul_le {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (hp : p 0) (c : 𝕜) (f : (lp E p)) :
                instance lp.instBoundedSMulSubtypePreLpMemAddSubgroup {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [Fact (1 p)] :
                BoundedSMul 𝕜 (lp E p)
                theorem lp.norm_const_smul {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedDivisionRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (hp : p 0) {c : 𝕜} (f : (lp E p)) :
                instance lp.instNormedSpace {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedField 𝕜] [(i : α) → NormedSpace 𝕜 (E i)] [Fact (1 p)] :
                NormedSpace 𝕜 (lp E p)
                Equations
                theorem Memℓp.star_mem {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f p) :
                @[simp]
                theorem Memℓp.star_iff {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] {f : (i : α) → E i} :
                instance lp.instStarSubtypePreLpMemAddSubgroup {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] :
                Star (lp E p)
                Equations
                @[simp]
                theorem lp.coeFn_star {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] (f : (lp E p)) :
                (star f) = star f
                @[simp]
                theorem lp.star_apply {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] (f : (lp E p)) (i : α) :
                (star f) i = star (f i)
                instance lp.instInvolutiveStar {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] :
                Equations
                instance lp.instStarAddMonoid {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] :
                StarAddMonoid (lp E p)
                Equations
                instance lp.instNormedStarGroupSubtypePreLpMemAddSubgroup {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] [hp : Fact (1 p)] :
                instance lp.instStarModuleSubtypePreLpMemAddSubgroup {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] [Star 𝕜] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [∀ (i : α), StarModule 𝕜 (E i)] :
                StarModule 𝕜 (lp E p)
                theorem Memℓp.infty_mul {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] {f g : (i : I) → B i} (hf : Memℓp f ) (hg : Memℓp g ) :
                Memℓp (f * g)
                instance lp.instMulSubtypePreLpMemAddSubgroupTopENNReal {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] :
                Mul (lp B )
                Equations
                @[simp]
                theorem lp.infty_coeFn_mul {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] (f g : (lp B )) :
                ↑(f * g) = f * g
                instance lp.nonUnitalRing {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] :
                Equations
                instance lp.nonUnitalNormedRing {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] :
                Equations
                instance lp.infty_isScalarTower {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] {𝕜 : Type u_7} [NormedRing 𝕜] [(i : I) → Module 𝕜 (B i)] [∀ (i : I), BoundedSMul 𝕜 (B i)] [∀ (i : I), IsScalarTower 𝕜 (B i) (B i)] :
                IsScalarTower 𝕜 (lp B ) (lp B )
                instance lp.infty_smulCommClass {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] {𝕜 : Type u_7} [NormedRing 𝕜] [(i : I) → Module 𝕜 (B i)] [∀ (i : I), BoundedSMul 𝕜 (B i)] [∀ (i : I), SMulCommClass 𝕜 (B i) (B i)] :
                SMulCommClass 𝕜 (lp B ) (lp B )
                instance lp.inftyStarRing {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] [(i : I) → StarRing (B i)] [∀ (i : I), NormedStarGroup (B i)] :
                StarRing (lp B )
                Equations
                instance lp.inftyCStarRing {I : Type u_5} {B : IType u_6} [(i : I) → NonUnitalNormedRing (B i)] [(i : I) → StarRing (B i)] [∀ (i : I), NormedStarGroup (B i)] [∀ (i : I), CStarRing (B i)] :
                instance PreLp.ring {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] :
                Equations
                theorem one_memℓp_infty {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
                def lpInftySubring {I : Type u_5} (B : IType u_6) [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :

                The 𝕜-subring of elements of ∀ i : α, B i whose lp norm is finite. This is lp E ∞, with extra structure.

                Equations
                Instances For
                  instance lp.inftyRing {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
                  Ring (lp B )
                  Equations
                  theorem Memℓp.infty_pow {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] {f : (i : I) → B i} (hf : Memℓp f ) (n : ) :
                  Memℓp (f ^ n)
                  theorem natCast_memℓp_infty {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (n : ) :
                  theorem intCast_memℓp_infty {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (z : ) :
                  @[simp]
                  theorem lp.infty_coeFn_one {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
                  1 = 1
                  @[simp]
                  theorem lp.infty_coeFn_pow {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (f : (lp B )) (n : ) :
                  ↑(f ^ n) = f ^ n
                  @[simp]
                  theorem lp.infty_coeFn_natCast {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (n : ) :
                  n = n
                  @[simp]
                  theorem lp.infty_coeFn_intCast {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (z : ) :
                  z = z
                  instance lp.instNormOneClassSubtypePreLpMemAddSubgroupTopENNRealOfNonempty {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] [Nonempty I] :
                  instance lp.inftyNormedRing {I : Type u_5} {B : IType u_6} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
                  Equations
                  instance lp.inftyNormedCommRing {I : Type u_5} {B : IType u_6} [(i : I) → NormedCommRing (B i)] [∀ (i : I), NormOneClass (B i)] :
                  Equations
                  instance Pi.algebraOfNormedAlgebra {𝕜 : Type u_1} {I : Type u_5} {B : IType u_6} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] :
                  Algebra 𝕜 ((i : I) → B i)

                  A variant of Pi.algebra that lean can't find otherwise.

                  Equations
                  instance PreLp.algebra {𝕜 : Type u_1} {I : Type u_5} {B : IType u_6} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] :
                  Algebra 𝕜 (PreLp B)
                  Equations
                  theorem algebraMap_memℓp_infty {𝕜 : Type u_1} {I : Type u_5} {B : IType u_6} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] [∀ (i : I), NormOneClass (B i)] (k : 𝕜) :
                  Memℓp ((algebraMap 𝕜 ((i : I) → B i)) k)
                  def lpInftySubalgebra (𝕜 : Type u_1) {I : Type u_5} (B : IType u_6) [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] [∀ (i : I), NormOneClass (B i)] :
                  Subalgebra 𝕜 (PreLp B)

                  The 𝕜-subalgebra of elements of ∀ i : α, B i whose lp norm is finite. This is lp E ∞, with extra structure.

                  Equations
                  Instances For
                    instance lp.inftyNormedAlgebra {𝕜 : Type u_1} {I : Type u_5} {B : IType u_6} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] [∀ (i : I), NormOneClass (B i)] :
                    NormedAlgebra 𝕜 (lp B )
                    Equations
                    def lp.single {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                    (lp E p)

                    The element of lp E p which is a : E i at the index i, and zero elsewhere.

                    Equations
                    Instances For
                      theorem lp.coeFn_single {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                      (lp.single p i a) = Pi.single i a
                      @[simp]
                      theorem lp.single_apply {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) (j : α) :
                      (lp.single p i a) j = Pi.single i a j
                      theorem lp.single_apply_self {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                      (lp.single p i a) i = a
                      theorem lp.single_apply_ne {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) {j : α} (hij : j i) :
                      (lp.single p i a) j = 0
                      @[simp]
                      theorem lp.single_zero {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) :
                      lp.single p i 0 = 0
                      @[simp]
                      theorem lp.single_add {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a b : E i) :
                      lp.single p i (a + b) = lp.single p i a + lp.single p i b
                      def lp.singleAddMonoidHom {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) :
                      E i →+ (lp E p)

                      single as an AddMonoidHom.

                      Equations
                      Instances For
                        @[simp]
                        theorem lp.singleAddMonoidHom_apply {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                        @[simp]
                        theorem lp.single_neg {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                        lp.single p i (-a) = -lp.single p i a
                        @[simp]
                        theorem lp.single_sub {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a b : E i) :
                        lp.single p i (a - b) = lp.single p i a - lp.single p i b
                        @[simp]
                        theorem lp.single_smul {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [DecidableEq α] (p : ENNReal) (i : α) (c : 𝕜) (a : E i) :
                        lp.single p i (c a) = c lp.single p i a
                        def lp.lsingle {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [DecidableEq α] (p : ENNReal) (i : α) :
                        E i →ₗ[𝕜] (lp E p)

                        single as a LinearMap.

                        Equations
                        Instances For
                          @[simp]
                          theorem lp.lsingle_apply {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                          (lsingle p i) a = lp.single p i a
                          theorem lp.norm_sum_single {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < p.toReal) (f : (i : α) → E i) (s : Finset α) :
                          is, lp.single p i (f i) ^ p.toReal = is, f i ^ p.toReal
                          @[simp]
                          theorem lp.norm_single {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < p) (i : α) (x : E i) :
                          theorem lp.isometry_single {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] [Fact (1 p)] (i : α) :
                          def lp.singleContinuousAddMonoidHom {α : Type u_3} (E : αType u_4) (p : ENNReal) [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] [Fact (1 p)] (i : α) :
                          ContinuousAddMonoidHom (E i) (lp E p)

                          lp.single as a continuous morphism of additive monoids.

                          Equations
                          Instances For
                            @[simp]
                            theorem lp.singleContinuousAddMonoidHom_apply {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] [Fact (1 p)] (i : α) (x : E i) :
                            def lp.singleContinuousLinearMap (𝕜 : Type u_1) {α : Type u_3} (E : αType u_4) (p : ENNReal) [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [DecidableEq α] [Fact (1 p)] (i : α) :
                            E i →L[𝕜] (lp E p)

                            lp.single as a continuous linear map.

                            Equations
                            Instances For
                              @[simp]
                              theorem lp.singleContinuousLinearMap_apply {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [DecidableEq α] [Fact (1 p)] (i : α) (x : E i) :
                              theorem lp.norm_sub_norm_compl_sub_single {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < p.toReal) (f : (lp E p)) (s : Finset α) :
                              f ^ p.toReal - f - is, lp.single p i (f i) ^ p.toReal = is, f i ^ p.toReal
                              theorem lp.norm_compl_sum_single {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < p.toReal) (f : (lp E p)) (s : Finset α) :
                              f - is, lp.single p i (f i) ^ p.toReal = f ^ p.toReal - is, f i ^ p.toReal
                              theorem lp.hasSum_single {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] [Fact (1 p)] (hp : p ) (f : (lp E p)) :
                              HasSum (fun (i : α) => lp.single p i (f i)) f

                              The canonical finitely-supported approximations to an element f of lp converge to it, in the lp topology.

                              theorem lp.ext_continuousAddMonoidHom {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] {F : Type u_5} [AddCommMonoid F] [TopologicalSpace F] [T2Space F] [Fact (1 p)] (hp : p ) ⦃f g : ContinuousAddMonoidHom (↥(lp E p)) F (h : ∀ (i : α), f.comp (singleContinuousAddMonoidHom E p i) = g.comp (singleContinuousAddMonoidHom E p i)) :
                              f = g

                              Two continuous additive maps from lp E p agree if they agree on lp.single.

                              See note [partially-applied ext lemmas].

                              theorem lp.ext_continuousLinearMap {𝕜 : Type u_1} {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [DecidableEq α] {F : Type u_5} [AddCommMonoid F] [Module 𝕜 F] [TopologicalSpace F] [T2Space F] [Fact (1 p)] (hp : p ) ⦃f g : (lp E p) →L[𝕜] F (h : ∀ (i : α), f.comp (singleContinuousLinearMap 𝕜 E p i) = g.comp (singleContinuousLinearMap 𝕜 E p i)) :
                              f = g

                              Two continuous linear maps from lp E p agree if they agree on lp.single.

                              See note [partially-applied ext lemmas].

                              theorem lp.uniformContinuous_coe {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [_i : Fact (1 p)] :

                              The coercion from lp E p to ∀ i, E i is uniformly continuous.

                              theorem lp.norm_apply_le_of_tendsto {α : Type u_3} {E : αType u_4} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_5} {l : Filter ι} [l.NeBot] {C : } {F : ι(lp E )} (hCF : ∀ᶠ (k : ι) in l, F k C) {f : (a : α) → E a} (hf : Filter.Tendsto (id fun (i : ι) => (F i)) l (nhds f)) (a : α) :
                              f a C
                              theorem lp.sum_rpow_le_of_tendsto {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_5} {l : Filter ι} [l.NeBot] [_i : Fact (1 p)] (hp : p ) {C : } {F : ι(lp E p)} (hCF : ∀ᶠ (k : ι) in l, F k C) {f : (a : α) → E a} (hf : Filter.Tendsto (id fun (i : ι) => (F i)) l (nhds f)) (s : Finset α) :
                              is, f i ^ p.toReal C ^ p.toReal
                              theorem lp.norm_le_of_tendsto {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_5} {l : Filter ι} [l.NeBot] [_i : Fact (1 p)] {C : } {F : ι(lp E p)} (hCF : ∀ᶠ (k : ι) in l, F k C) {f : (lp E p)} (hf : Filter.Tendsto (id fun (i : ι) => (F i)) l (nhds f)) :

                              "Semicontinuity of the lp norm": If all sufficiently large elements of a sequence in lp E p have lp norm ≤ C, then the pointwise limit, if it exists, also has lp norm ≤ C.

                              theorem lp.memℓp_of_tendsto {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_5} {l : Filter ι} [l.NeBot] [_i : Fact (1 p)] {F : ι(lp E p)} (hF : Bornology.IsBounded (Set.range F)) {f : (a : α) → E a} (hf : Filter.Tendsto (id fun (i : ι) => (F i)) l (nhds f)) :

                              If f is the pointwise limit of a bounded sequence in lp E p, then f is in lp E p.

                              theorem lp.tendsto_lp_of_tendsto_pi {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [_i : Fact (1 p)] {F : (lp E p)} (hF : CauchySeq F) {f : (lp E p)} (hf : Filter.Tendsto (id fun (i : ) => (F i)) Filter.atTop (nhds f)) :

                              If a sequence is Cauchy in the lp E p topology and pointwise convergent to an element f of lp E p, then it converges to f in the lp E p topology.

                              instance lp.completeSpace {α : Type u_3} {E : αType u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [_i : Fact (1 p)] [∀ (a : α), CompleteSpace (E a)] :
                              CompleteSpace (lp E p)
                              theorem LipschitzWith.uniformly_bounded {α : Type u_3} {ι : Type u_5} [PseudoMetricSpace α] (g : αι) {K : NNReal} (hg : ∀ (i : ι), LipschitzWith K fun (x : α) => g x i) (a₀ : α) (hga₀b : Memℓp (g a₀) ) (a : α) :
                              Memℓp (g a)
                              theorem LipschitzOnWith.coordinate {α : Type u_3} {ι : Type u_5} [PseudoMetricSpace α] (f : α(lp (fun (i : ι) => ) )) (s : Set α) (K : NNReal) :
                              LipschitzOnWith K f s ∀ (i : ι), LipschitzOnWith K (fun (a : α) => (f a) i) s
                              theorem LipschitzWith.coordinate {α : Type u_3} {ι : Type u_5} [PseudoMetricSpace α] {f : α(lp (fun (i : ι) => ) )} (K : NNReal) :
                              LipschitzWith K f ∀ (i : ι), LipschitzWith K fun (a : α) => (f a) i