(Strict) convexity and linear isometries #
In this file we prove some basic lemmas about (strict) convexity and linear isometries.
@[simp]
theorem
LinearIsometryEquiv.strictConvex_preimage
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NormedField ๐]
[PartialOrder ๐]
[SeminormedAddCommGroup E]
[NormedSpace ๐ E]
[SeminormedAddCommGroup F]
[NormedSpace ๐ F]
{s : Set F}
(e : E โโแตข[๐] F)
:
@[simp]
theorem
LinearIsometryEquiv.strictConvex_image
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NormedField ๐]
[PartialOrder ๐]
[SeminormedAddCommGroup E]
[NormedSpace ๐ E]
[SeminormedAddCommGroup F]
[NormedSpace ๐ F]
{s : Set E}
(e : E โโแตข[๐] F)
:
theorem
StrictConvex.linearIsometry_preimage
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NormedField ๐]
[PartialOrder ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[SeminormedAddCommGroup F]
[NormedSpace ๐ F]
{s : Set F}
(hs : StrictConvex ๐ s)
(e : E โโแตข[๐] F)
:
StrictConvex ๐ (โe โปยน' s)
theorem
LinearIsometryEquiv.strictConvexSpace_iff
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NormedField ๐]
[PartialOrder ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(e : E โโแตข[๐] F)
:
theorem
LinearIsometry.strictConvexSpace_range_iff
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NormedField ๐]
[PartialOrder ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(e : E โโแตข[๐] F)
:
instance
LinearIsometry.strictConvexSpace_range
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NormedField ๐]
[PartialOrder ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[StrictConvexSpace ๐ E]
(e : E โโแตข[๐] F)
:
StrictConvexSpace ๐ โฅ(LinearMap.range e)
theorem
LinearIsometry.strictConvexSpace
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NormedField ๐]
[PartialOrder ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[StrictConvexSpace ๐ F]
(f : E โโแตข[๐] F)
:
StrictConvexSpace ๐ E
@[instance 900]
instance
Submodule.instStrictConvexSpace
{๐ : Type u_1}
{E : Type u_2}
[NormedField ๐]
[PartialOrder ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[StrictConvexSpace ๐ E]
(p : Submodule ๐ E)
:
StrictConvexSpace ๐ โฅp
A vector subspace of a strict convex space is a strict convex space.
This instance has priority 900
to make sure that instances like LinearIsometry.strictConvexSpace_range
are tried before this one.