Documentation

Mathlib.Analysis.Convex.LinearIsometry

(Strict) convexity and linear isometries #

In this file we prove some basic lemmas about (strict) convexity and linear isometries.

@[simp]
theorem LinearIsometryEquiv.strictConvex_preimage {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [PartialOrder ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] [SeminormedAddCommGroup F] [NormedSpace ๐•œ F] {s : Set F} (e : E โ‰ƒโ‚—แตข[๐•œ] F) :
StrictConvex ๐•œ (โ‡‘e โปยน' s) โ†” StrictConvex ๐•œ s
@[simp]
theorem LinearIsometryEquiv.strictConvex_image {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [PartialOrder ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] [SeminormedAddCommGroup F] [NormedSpace ๐•œ F] {s : Set E} (e : E โ‰ƒโ‚—แตข[๐•œ] F) :
StrictConvex ๐•œ (โ‡‘e '' s) โ†” StrictConvex ๐•œ s
theorem StrictConvex.linearIsometry_preimage {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [PartialOrder ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [SeminormedAddCommGroup F] [NormedSpace ๐•œ F] {s : Set F} (hs : StrictConvex ๐•œ s) (e : E โ†’โ‚—แตข[๐•œ] F) :
StrictConvex ๐•œ (โ‡‘e โปยน' s)
theorem LinearIsometryEquiv.strictConvexSpace_iff {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [PartialOrder ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (e : E โ‰ƒโ‚—แตข[๐•œ] F) :
theorem LinearIsometry.strictConvexSpace_range_iff {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [PartialOrder ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (e : E โ†’โ‚—แตข[๐•œ] F) :
instance LinearIsometry.strictConvexSpace_range {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [PartialOrder ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [StrictConvexSpace ๐•œ E] (e : E โ†’โ‚—แตข[๐•œ] F) :
StrictConvexSpace ๐•œ โ†ฅ(LinearMap.range e)
theorem LinearIsometry.strictConvexSpace {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField ๐•œ] [PartialOrder ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [StrictConvexSpace ๐•œ F] (f : E โ†’โ‚—แตข[๐•œ] F) :
StrictConvexSpace ๐•œ E
@[instance 900]
instance Submodule.instStrictConvexSpace {๐•œ : Type u_1} {E : Type u_2} [NormedField ๐•œ] [PartialOrder ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [StrictConvexSpace ๐•œ E] (p : Submodule ๐•œ E) :
StrictConvexSpace ๐•œ โ†ฅp

A vector subspace of a strict convex space is a strict convex space.

This instance has priority 900 to make sure that instances like LinearIsometry.strictConvexSpace_range are tried before this one.