Documentation

Mathlib.Analysis.Distribution.SchwartzSpace.Deriv

Derivatives of Schwartz functions #

In this file we define the various notions of derivatives of Schwartz functions.

Main definitions #

Main statements #

Derivatives of Schwartz functions #

def SchwartzMap.derivCLM (π•œ : Type u_2) (F : Type u_8) [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] :

The 1-dimensional derivative on Schwartz space as a continuous π•œ-linear map.

Equations
Instances For
    @[simp]
    theorem SchwartzMap.derivCLM_apply (π•œ : Type u_2) {F : Type u_8} [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] (f : SchwartzMap ℝ F) (x : ℝ) :
    ((derivCLM π•œ F) f) x = deriv (⇑f) x
    theorem SchwartzMap.hasDerivAt {F : Type u_8} [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap ℝ F) (x : ℝ) :
    HasDerivAt (⇑f) (deriv (⇑f) x) x
    def SchwartzMap.fderivCLM (π•œ : Type u_2) (E : Type u_5) (F : Type u_8) [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedSpace ℝ E] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

    The FrΓ©chet derivative on Schwartz space as a continuous π•œ-linear map.

    Equations
    Instances For
      @[simp]
      theorem SchwartzMap.fderivCLM_apply (π•œ : Type u_2) {E : Type u_5} {F : Type u_8} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedSpace ℝ E] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
      ((fderivCLM π•œ E F) f) x = fderiv ℝ (⇑f) x
      theorem SchwartzMap.hasFDerivAt {E : Type u_5} {F : Type u_8} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedSpace ℝ E] (f : SchwartzMap E F) (x : E) :
      HasFDerivAt (⇑f) (fderiv ℝ (⇑f) x) x

      The partial derivative (or directional derivative) in the direction m : E as a continuous linear map on Schwartz space.

      Equations
      instance SchwartzMap.instLineDerivSMul (π•œ : Type u_2) {E : Type u_5} {F : Type u_8} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedSpace ℝ E] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
      LineDerivSMul π•œ E (SchwartzMap E F) (SchwartzMap E F)
      theorem SchwartzMap.lineDerivOpCLM_eq (π•œ : Type u_2) {E : Type u_5} {F : Type u_8} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedSpace ℝ E] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) :
      LineDeriv.lineDerivOpCLM π•œ (SchwartzMap E F) m = (SchwartzMap.evalCLM π•œ E F m).comp (fderivCLM π•œ E F)
      @[deprecated LineDeriv.lineDerivOpCLM (since := "2025-11-25")]
      def SchwartzMap.pderivCLM (R : Type u_4) {V : Type u_5} (E : Type u_6) {F : Type u_7} [Ring R] [AddCommGroup E] [Module R E] [AddCommGroup F] [Module R F] [TopologicalSpace E] [TopologicalSpace F] [AddCommGroup V] [LineDeriv V E F] [LineDerivAdd V E F] [LineDerivSMul R V E F] [ContinuousLineDeriv V E F] (m : V) :

      Alias of LineDeriv.lineDerivOpCLM.

      Equations
      Instances For
        @[deprecated LineDeriv.lineDerivOpCLM_apply (since := "2025-11-25")]
        theorem SchwartzMap.pderivCLM_apply {R : Type u_4} {V : Type u_5} {E : Type u_6} {F : Type u_7} [Ring R] [AddCommGroup E] [Module R E] [AddCommGroup F] [Module R F] [TopologicalSpace E] [TopologicalSpace F] [AddCommGroup V] [LineDeriv V E F] [LineDerivAdd V E F] [LineDerivSMul R V E F] [ContinuousLineDeriv V E F] (m : V) (x : E) :

        Alias of LineDeriv.lineDerivOpCLM_apply.

        @[deprecated LineDeriv.iteratedLineDerivOpCLM (since := "2025-11-25")]
        def SchwartzMap.iteratedPDeriv (R : Type u_4) {V : Type u_5} (E : Type u_6) [LineDeriv V E E] [TopologicalSpace E] [Ring R] [AddCommGroup V] [AddCommGroup E] [Module R E] [LineDerivAdd V E E] [LineDerivSMul R V E E] [ContinuousLineDeriv V E E] {n : β„•} (m : Fin n β†’ V) :

        Alias of LineDeriv.iteratedLineDerivOpCLM.

        Equations
        Instances For
          @[deprecated LineDeriv.iteratedLineDerivOp_zero (since := "2025-11-25")]
          theorem SchwartzMap.iteratedPDeriv_zero {V : Type u_14} {E : Type u_15} [LineDeriv V E E] (m : Fin 0 β†’ V) (f : E) :

          Alias of LineDeriv.iteratedLineDerivOp_zero.

          @[deprecated LineDeriv.iteratedLineDerivOp_one (since := "2025-11-25")]
          theorem SchwartzMap.iteratedPDeriv_one {V : Type u_14} {E : Type u_15} [LineDeriv V E E] (m : Fin 1 β†’ V) (f : E) :

          Alias of LineDeriv.iteratedLineDerivOp_one.

          @[deprecated LineDeriv.iteratedLineDerivOp_succ_left (since := "2025-11-25")]
          theorem SchwartzMap.iteratedPDeriv_succ_left {V : Type u_14} {E : Type u_15} [LineDeriv V E E] {n : β„•} (m : Fin (n + 1) β†’ V) (f : E) :

          Alias of LineDeriv.iteratedLineDerivOp_succ_left.

          @[deprecated LineDeriv.iteratedLineDerivOp_succ_right (since := "2025-11-25")]

          Alias of LineDeriv.iteratedLineDerivOp_succ_right.

          @[deprecated SchwartzMap.iteratedLineDerivOp_eq_iteratedFDeriv (since := "2025-11-25")]

          Alias of SchwartzMap.iteratedLineDerivOp_eq_iteratedFDeriv.

          Laplacian on 𝓒(E, F) #

          Integration by parts of Schwartz functions for the 1-dimensional derivative.

          Version for a general bilinear map.

          theorem SchwartzMap.integral_mul_deriv_eq_neg_deriv_mul {π•œ : Type u_2} [NormedRing π•œ] [NormedSpace ℝ π•œ] [IsScalarTower ℝ π•œ π•œ] [SMulCommClass ℝ π•œ π•œ] (f g : SchwartzMap ℝ π•œ) :
          ∫ (x : ℝ), f x * deriv (⇑g) x = -∫ (x : ℝ), deriv (⇑f) x * g x

          Integration by parts of Schwartz functions for the 1-dimensional derivative.

          Version for multiplication of scalar-valued Schwartz functions.

          theorem SchwartzMap.integral_smul_deriv_right_eq_neg_left {π•œ : Type u_2} {F : Type u_8} [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] (f : SchwartzMap ℝ π•œ) (g : SchwartzMap ℝ F) :
          ∫ (x : ℝ), f x β€’ deriv (⇑g) x = -∫ (x : ℝ), deriv (⇑f) x β€’ g x

          Integration by parts of Schwartz functions for the 1-dimensional derivative.

          Version for a Schwartz function with values in continuous linear maps.

          theorem SchwartzMap.integral_clm_comp_deriv_right_eq_neg_left {π•œ : Type u_2} {V : Type u_7} {F : Type u_8} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedAddCommGroup V] [NormedSpace ℝ V] [RCLike π•œ] [NormedSpace π•œ F] [NormedSpace π•œ V] (f : SchwartzMap ℝ (F β†’L[π•œ] V)) (g : SchwartzMap ℝ F) :
          ∫ (x : ℝ), (f x) (deriv (⇑g) x) = -∫ (x : ℝ), (deriv (⇑f) x) (g x)

          Integration by parts of Schwartz functions for the 1-dimensional derivative.

          Version for a Schwartz function with values in continuous linear maps.

          Integration by parts of Schwartz functions for directional derivatives.

          Version for a general bilinear map.

          theorem SchwartzMap.integral_mul_lineDerivOp_right_eq_neg_left {π•œ : Type u_2} {D : Type u_4} [NormedAddCommGroup D] [NormedSpace ℝ D] [MeasurableSpace D] {ΞΌ : MeasureTheory.Measure D} [BorelSpace D] [FiniteDimensional ℝ D] [ΞΌ.IsAddHaarMeasure] [NormedRing π•œ] [NormedSpace ℝ π•œ] [IsScalarTower ℝ π•œ π•œ] [SMulCommClass ℝ π•œ π•œ] (f g : SchwartzMap D π•œ) (v : D) :
          ∫ (x : D), f x * (LineDeriv.lineDerivOp v g) x βˆ‚ΞΌ = -∫ (x : D), (LineDeriv.lineDerivOp v f) x * g x βˆ‚ΞΌ

          Integration by parts of Schwartz functions for directional derivatives.

          Version for multiplication of scalar-valued Schwartz functions.

          Integration by parts of Schwartz functions for directional derivatives.

          Version for scalar multiplication.

          theorem SchwartzMap.integral_clm_comp_lineDerivOp_right_eq_neg_left {π•œ : Type u_2} {D : Type u_4} {V : Type u_7} {F : Type u_8} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedAddCommGroup D] [NormedSpace ℝ D] [MeasurableSpace D] {ΞΌ : MeasureTheory.Measure D} [BorelSpace D] [FiniteDimensional ℝ D] [ΞΌ.IsAddHaarMeasure] [RCLike π•œ] [NormedSpace π•œ F] [NormedSpace π•œ V] (f : SchwartzMap D (F β†’L[π•œ] V)) (g : SchwartzMap D F) (v : D) :
          ∫ (x : D), (f x) ((LineDeriv.lineDerivOp v g) x) βˆ‚ΞΌ = -∫ (x : D), ((LineDeriv.lineDerivOp v f) x) (g x) βˆ‚ΞΌ

          Integration by parts of Schwartz functions for directional derivatives.

          Version for a Schwartz function with values in continuous linear maps.

          Integration by parts #

          theorem SchwartzMap.integral_bilinear_laplacian_right_eq_left {E : Type u_5} {F₁ : Type u_9} {Fβ‚‚ : Type u_10} {F₃ : Type u_11} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] [NormedAddCommGroup F₁] [NormedSpace ℝ F₁] [NormedAddCommGroup Fβ‚‚] [NormedSpace ℝ Fβ‚‚] [NormedAddCommGroup F₃] [NormedSpace ℝ F₃] [MeasurableSpace E] {ΞΌ : MeasureTheory.Measure E} [BorelSpace E] [ΞΌ.IsAddHaarMeasure] (f : SchwartzMap E F₁) (g : SchwartzMap E Fβ‚‚) (L : F₁ β†’L[ℝ] Fβ‚‚ β†’L[ℝ] F₃) :
          ∫ (x : E), (L (f x)) ((Laplacian.laplacian g) x) βˆ‚ΞΌ = ∫ (x : E), (L ((Laplacian.laplacian f) x)) (g x) βˆ‚ΞΌ

          Integration by parts of Schwartz functions for the Laplacian.

          Version for a general bilinear map.

          theorem SchwartzMap.integral_mul_laplacian_right_eq_left {π•œ : Type u_2} {E : Type u_5} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] [MeasurableSpace E] {ΞΌ : MeasureTheory.Measure E} [BorelSpace E] [ΞΌ.IsAddHaarMeasure] [NormedRing π•œ] [NormedSpace ℝ π•œ] [IsScalarTower ℝ π•œ π•œ] [SMulCommClass ℝ π•œ π•œ] (f g : SchwartzMap E π•œ) :
          ∫ (x : E), f x * (Laplacian.laplacian g) x βˆ‚ΞΌ = ∫ (x : E), (Laplacian.laplacian f) x * g x βˆ‚ΞΌ

          Integration by parts of Schwartz functions for the Laplacian.

          Version for multiplication of scalar-valued Schwartz functions.

          Integration by parts of Schwartz functions for the Laplacian.

          Version for scalar multiplication.

          theorem SchwartzMap.integral_clm_comp_laplacian_right_eq_left {π•œ : Type u_2} {E : Type u_5} {F₁ : Type u_9} {Fβ‚‚ : Type u_10} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] [NormedAddCommGroup F₁] [NormedSpace ℝ F₁] [NormedAddCommGroup Fβ‚‚] [NormedSpace ℝ Fβ‚‚] [MeasurableSpace E] {ΞΌ : MeasureTheory.Measure E} [BorelSpace E] [ΞΌ.IsAddHaarMeasure] [RCLike π•œ] [NormedSpace π•œ F₁] [NormedSpace π•œ Fβ‚‚] (f : SchwartzMap E (F₁ β†’L[π•œ] Fβ‚‚)) (g : SchwartzMap E F₁) :
          ∫ (x : E), (f x) ((Laplacian.laplacian g) x) βˆ‚ΞΌ = ∫ (x : E), ((Laplacian.laplacian f) x) (g x) βˆ‚ΞΌ

          Integration by parts of Schwartz functions for the Laplacian.

          Version for a Schwartz function with values in continuous linear maps.