Documentation

Mathlib.Analysis.Distribution.TemperedDistribution

TemperedDistribution #

Main definitions #

Notation #

@[reducible, inline]

The space of tempered distribution is the space of continuous linear maps from the Schwartz to a normed space, equipped with the topology of pointwise convergence.

Equations
Instances For

    The space of tempered distribution is the space of continuous linear maps from the Schwartz to a normed space, equipped with the topology of pointwise convergence.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Embeddings into tempered distributions #

      A function of temperate growth f defines a tempered distribution via integration, namely g ↦ ∫ (x : E), g x β€’ f x βˆ‚ΞΌ.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The canonical embedding of 𝓒(E, F) into 𝓒'(E, F) as a continuous linear map.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Define a tempered distribution from a L^p function.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem MeasureTheory.Lp.toTemperedDistribution_apply {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ E] [NormedSpace β„‚ F] [CompleteSpace F] [MeasurableSpace E] [BorelSpace E] {ΞΌ : Measure E} [hΞΌ : ΞΌ.HasTemperateGrowth] {p : ENNReal} [hp : Fact (1 ≀ p)] (f : β†₯(Lp F p ΞΌ)) (g : SchwartzMap E β„‚) :
            (toTemperedDistribution f) g = ∫ (x : E), g x β€’ ↑↑f x βˆ‚ΞΌ
            instance MeasureTheory.Lp.instCoeDep {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ E] [NormedSpace β„‚ F] [CompleteSpace F] [MeasurableSpace E] [BorelSpace E] {ΞΌ : Measure E} [hΞΌ : ΞΌ.HasTemperateGrowth] {p : ENNReal} [hp : Fact (1 ≀ p)] (f : β†₯(Lp F p ΞΌ)) :
            CoeDep (β†₯(Lp F p ΞΌ)) f (TemperedDistribution E F)
            Equations

            The natural embedding of L^p into tempered distributions.

            Equations
            Instances For

              Scalar multiplication with temperate growth functions #

              Multiplication with a temperate growth function as a continuous linear map on 𝓒'(E, F).

              Equations
              Instances For
                @[simp]
                theorem TemperedDistribution.smulLeftCLM_smulLeftCLM_apply {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ E] [NormedSpace β„‚ F] {g₁ gβ‚‚ : E β†’ β„‚} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) (f : TemperedDistribution E F) :
                (smulLeftCLM F gβ‚‚) ((smulLeftCLM F g₁) f) = (smulLeftCLM F (g₁ * gβ‚‚)) f
                theorem TemperedDistribution.smulLeftCLM_compL_smulLeftCLM {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace ℝ E] [NormedSpace β„‚ F] {g₁ gβ‚‚ : E β†’ β„‚} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) :
                (smulLeftCLM F gβ‚‚).comp (smulLeftCLM F g₁) = smulLeftCLM F (g₁ * gβ‚‚)

                Derivatives #

                The 1-dimensional derivative on tempered distribution as a continuous β„‚-linear map.

                Equations
                Instances For

                  The partial derivative (or directional derivative) in the direction m : E as a continuous linear map on tempered distributions.

                  Equations
                  • One or more equations did not get rendered due to their size.

                  Fourier transform #

                  The Dirac delta distribution

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[deprecated TemperedDistribution.delta (since := "2025-12-23")]

                    Alias of TemperedDistribution.delta.


                    The Dirac delta distribution

                    Equations
                    Instances For
                      @[simp]
                      @[deprecated TemperedDistribution.delta_apply (since := "2025-12-23")]

                      Alias of TemperedDistribution.delta_apply.

                      @[simp]

                      Dirac measure considered as a tempered distribution is the delta distribution.

                      @[deprecated TemperedDistribution.toTemperedDistribution_dirac_eq_delta (since := "2025-12-23")]

                      Alias of TemperedDistribution.toTemperedDistribution_dirac_eq_delta.


                      Dirac measure considered as a tempered distribution is the delta distribution.

                      The Fourier transform of the delta distribution is equal to the volume.

                      Informally, this is usually represented as 𝓕 Ξ΄ = 1.