TemperedDistribution #
Main definitions #
TemperedDistribution E F: The space𝓢(E, ℂ) →L[ℂ] Fequipped with the pointwise convergence topology.MeasureTheory.Measure.toTemperedDistribution: Every measure of temperate growth is a tempered distribution.MeasureTheory.Lp.toTemperedDistribution: EveryLpfunction is a tempered distribution.TemperedDistribution.fourierTransformCLM: The Fourier transform on tempered distributions.
Notation #
𝓢'(E, F): The space of tempered distributionsTemperedDistribution E Fscoped inSchwartzMap
@[reducible, inline]
abbrev
TemperedDistribution
(E : Type u_1)
(F : Type u_2)
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℂ F]
:
Type (max u_1 u_2)
The space of tempered distribution is the space of continuous linear maps from the Schwartz to a normed space, equipped with the topology of pointwise convergence.
Equations
- TemperedDistribution E F = (SchwartzMap E ℂ →Lₚₜ[ℂ] F)
Instances For
The space of tempered distribution is the space of continuous linear maps from the Schwartz to a normed space, equipped with the topology of pointwise convergence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Embeddings into tempered distributions #
def
MeasureTheory.Measure.toTemperedDistribution
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[SecondCountableTopology E]
(μ : Measure E := by volume_tac)
[hμ : μ.HasTemperateGrowth]
:
Every temperate growth measure defines a tempered distribution.
Equations
Instances For
@[simp]
theorem
MeasureTheory.Measure.toTemperedDistribution_apply
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[SecondCountableTopology E]
(μ : Measure E := by volume_tac)
[hμ : μ.HasTemperateGrowth]
(g : SchwartzMap E ℂ)
:
def
MeasureTheory.Lp.toTemperedDistribution
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℂ F]
[CompleteSpace F]
[MeasurableSpace E]
[BorelSpace E]
{μ : Measure E}
[hμ : μ.HasTemperateGrowth]
{p : ENNReal}
[hp : Fact (1 ≤ p)]
(f : ↥(Lp F p μ))
:
Define a tempered distribution from a L^p function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MeasureTheory.Lp.toTemperedDistribution_apply
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℂ F]
[CompleteSpace F]
[MeasurableSpace E]
[BorelSpace E]
{μ : Measure E}
[hμ : μ.HasTemperateGrowth]
{p : ENNReal}
[hp : Fact (1 ≤ p)]
(f : ↥(Lp F p μ))
(g : SchwartzMap E ℂ)
:
instance
MeasureTheory.Lp.instCoeDep
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℂ F]
[CompleteSpace F]
[MeasurableSpace E]
[BorelSpace E]
{μ : Measure E}
[hμ : μ.HasTemperateGrowth]
{p : ENNReal}
[hp : Fact (1 ≤ p)]
(f : ↥(Lp F p μ))
:
CoeDep (↥(Lp F p μ)) f (TemperedDistribution E F)
Equations
def
MeasureTheory.Lp.toTemperedDistributionCLM
{E : Type u_1}
(F : Type u_2)
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℂ F]
[CompleteSpace F]
[MeasurableSpace E]
[BorelSpace E]
(μ : Measure E := by volume_tac)
[μ.HasTemperateGrowth]
(p : ENNReal)
[hp : Fact (1 ≤ p)]
:
The natural embedding of L^p into tempered distributions.
Equations
- MeasureTheory.Lp.toTemperedDistributionCLM F μ p = { toFun := MeasureTheory.Lp.toTemperedDistribution, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }
Instances For
@[simp]
theorem
MeasureTheory.Lp.toTemperedDistributionCLM_apply
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℂ F]
[CompleteSpace F]
[MeasurableSpace E]
[BorelSpace E]
{μ : Measure E}
[hμ : μ.HasTemperateGrowth]
{p : ENNReal}
[hp : Fact (1 ≤ p)]
(f : ↥(Lp F p μ))
:
theorem
MeasureTheory.Lp.ker_toTemperedDistributionCLM_eq_bot
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℂ F]
[CompleteSpace F]
[MeasurableSpace E]
[BorelSpace E]
{μ : Measure E}
[hμ : μ.HasTemperateGrowth]
[FiniteDimensional ℝ E]
[IsLocallyFiniteMeasure μ]
{p : ENNReal}
[hp : Fact (1 ≤ p)]
:
Fourier transform #
def
TemperedDistribution.fourierTransformCLM
(E : Type u_1)
(F : Type u_2)
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
The Fourier transform on tempered distributions as a continuous linear map.
Equations
Instances For
instance
TemperedDistribution.instFourierTransform
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
FourierTransform (TemperedDistribution E F) (TemperedDistribution E F)
Equations
- TemperedDistribution.instFourierTransform = { fourier := ⇑(TemperedDistribution.fourierTransformCLM E F) }
@[simp]
theorem
TemperedDistribution.fourierTransformCLM_apply
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(f : TemperedDistribution E F)
:
@[simp]
theorem
TemperedDistribution.fourierTransform_apply
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(f : TemperedDistribution E F)
(g : SchwartzMap E ℂ)
:
def
TemperedDistribution.fourierTransformInvCLM
(E : Type u_1)
(F : Type u_2)
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
The inverse Fourier transform on tempered distributions as a continuous linear map.
Equations
Instances For
instance
TemperedDistribution.instFourierTransformInv
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
Equations
- TemperedDistribution.instFourierTransformInv = { fourierInv := ⇑(TemperedDistribution.fourierTransformInvCLM E F) }
@[simp]
theorem
TemperedDistribution.fourierTransformInvCLM_apply
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(f : TemperedDistribution E F)
:
@[simp]
theorem
TemperedDistribution.fourierTransformInv_apply
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(f : TemperedDistribution E F)
(g : SchwartzMap E ℂ)
:
instance
TemperedDistribution.instFourierPair
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
FourierPair (TemperedDistribution E F) (TemperedDistribution E F)
instance
TemperedDistribution.instFourierPairInv
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[NormedSpace ℂ F]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
FourierInvPair (TemperedDistribution E F) (TemperedDistribution E F)