The Fourier transform on $L^p$ #
In this file we define the Fourier transform on $L^2$ as a linear isometry equivalence.
Main definitions #
Lp.fourierTransformₗᵢ: The Fourier transform on $L^2$ as a linear isometry equivalence.
Main statements #
SchwartzMap.toLp_fourier_eq: The Fourier transform on𝓢(E, F)agrees with the Fourier transform on $L^2$.MeasureTheory.Lp.fourier_toTemperedDistribution_eq: The Fourier transform on $L^2$ agrees with the Fourier transform on𝓢'(E, F).
def
MeasureTheory.Lp.fourierTransformₗᵢ
(E : Type u_1)
(F : Type u_2)
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
:
The Fourier transform on L2 as a linear isometry equivalence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
MeasureTheory.Lp.instFourierTransform
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
:
FourierTransform ↥(Lp F 2 volume) ↥(Lp F 2 volume)
Equations
- MeasureTheory.Lp.instFourierTransform = { fourier := ⇑(MeasureTheory.Lp.fourierTransformₗᵢ E F) }
instance
MeasureTheory.Lp.instFourierTransformInv
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
:
FourierTransformInv ↥(Lp F 2 volume) ↥(Lp F 2 volume)
Equations
- MeasureTheory.Lp.instFourierTransformInv = { fourierInv := ⇑(MeasureTheory.Lp.fourierTransformₗᵢ E F).symm }
instance
MeasureTheory.Lp.instFourierPair
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
:
FourierPair ↥(Lp F 2 volume) ↥(Lp F 2 volume)
instance
MeasureTheory.Lp.instFourierPairInv
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
:
FourierInvPair ↥(Lp F 2 volume) ↥(Lp F 2 volume)
@[simp]
theorem
MeasureTheory.Lp.norm_fourier_eq
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
(f : ↥(Lp F 2 volume))
:
Plancherel's theorem for L2 functions.
@[simp]
theorem
MeasureTheory.Lp.inner_fourier_eq
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
(f : ↥(Lp F 2 volume))
(g : ↥(Lp F 2 volume))
:
@[simp]
theorem
SchwartzMap.toLp_fourier_eq
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
(f : SchwartzMap E F)
:
@[simp]
theorem
SchwartzMap.toLp_fourierInv_eq
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
(f : SchwartzMap E F)
:
theorem
MeasureTheory.Lp.fourier_toTemperedDistribution_eq
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
(f : ↥(Lp F 2 volume))
:
The 𝓢'-Fourier transform and the L2-Fourier transform coincide on L2.
theorem
MeasureTheory.Lp.fourierInv_toTemperedDistribution_eq
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[MeasurableSpace E]
[BorelSpace E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ F]
[CompleteSpace F]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
(f : ↥(Lp F 2 volume))
:
The 𝓢'-inverse Fourier transform and the L2-inverse Fourier transform coincide on L2.