Documentation

Mathlib.Analysis.InnerProductSpace.Harmonic.Constructions

Construction of Harmonic Functions #

This file constructs examples of harmonic functions.

If f : ℂ → F is complex-differentiable, then f is harmonic. If F = ℂ, then so is its real part, imaginary part, and complex conjugate. If f has no zero, then log ‖f‖ is harmonic.

Harmonicity of Analytic Functions on the Complex Plane #

theorem ContDiffAt.harmonicAt {F : Type u_1} [NormedAddCommGroup F] [NormedSpace F] {f : F} {x : } (h : ContDiffAt 2 f x) :

Continuously complex-differentiable functions on ℂ are harmonic.

Analytic functions on ℂ are harmonic.

theorem AnalyticAt.harmonicAt_re {x : } {f : } (h : AnalyticAt f x) :
InnerProductSpace.HarmonicAt (fun (z : ) => (f z).re) x

If f : ℂ → ℂ is complex-analytic, then its real part is harmonic.

theorem AnalyticAt.harmonicAt_im {x : } {f : } (h : AnalyticAt f x) :
InnerProductSpace.HarmonicAt (fun (z : ) => (f z).im) x

If f : ℂ → ℂ is complex-analytic, then its imaginary part is harmonic.

If f : ℂ → ℂ is complex-analytic, then its complex conjugate is harmonic.

Harmonicity of log ‖analytic‖ #

theorem AnalyticAt.harmonicAt_log_norm {f : } {z : } (h₁f : AnalyticAt f z) (h₂f : f z 0) :

If f : ℂ → ℂ is complex-analytic without zero, then log ‖f‖ is harmonic.