Documentation

Mathlib.Analysis.InnerProductSpace.JointEigenspace

Joint eigenspaces of commuting symmetric operators #

This file collects various decomposition results for joint eigenspaces of commuting symmetric operators on a finite-dimensional inner product space.

Main Result #

TODO #

Develop a Diagonalization structure for linear maps and / or matrices which consists of a basis, and a proof obligation that the basis vectors are eigenvectors.

Tags #

symmetric operator, simultaneous eigenspaces, joint eigenspaces

theorem LinearMap.IsSymmetric.orthogonalFamily_eigenspace_inf_eigenspace {๐•œ : Type u_1} {E : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] {A B : E โ†’โ‚—[๐•œ] E} (hA : A.IsSymmetric) (hB : B.IsSymmetric) :
OrthogonalFamily ๐•œ (fun (i : ๐•œ ร— ๐•œ) => โ†ฅ(Module.End.eigenspace A i.2 โŠ“ Module.End.eigenspace B i.1)) fun (i : ๐•œ ร— ๐•œ) => (Module.End.eigenspace A i.2 โŠ“ Module.End.eigenspace B i.1).subtypeโ‚—แตข

The joint eigenspaces of a pair of symmetric operators form an OrthogonalFamily.

theorem LinearMap.IsSymmetric.orthogonalFamily_iInf_eigenspaces {๐•œ : Type u_1} {E : Type u_2} {n : Type u_3} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] {T : n โ†’ Module.End ๐•œ E} (hT : โˆ€ (i : n), IsSymmetric (T i)) :
OrthogonalFamily ๐•œ (fun (ฮณ : n โ†’ ๐•œ) => โ†ฅ(โจ… (j : n), (T j).eigenspace (ฮณ j))) fun (ฮณ : n โ†’ ๐•œ) => (โจ… (j : n), (T j).eigenspace (ฮณ j)).subtypeโ‚—แตข

The joint eigenspaces of a family of symmetric operators form an OrthogonalFamily.

theorem LinearMap.IsSymmetric.iSup_eigenspace_inf_eigenspace_of_commute {๐•œ : Type u_1} {E : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] {ฮฑ : ๐•œ} {A B : E โ†’โ‚—[๐•œ] E} [FiniteDimensional ๐•œ E] (hB : B.IsSymmetric) (hAB : Commute A B) :
โจ† (ฮณ : ๐•œ), Module.End.eigenspace A ฮฑ โŠ“ Module.End.eigenspace B ฮณ = Module.End.eigenspace A ฮฑ

If A and B are commuting symmetric operators on a finite dimensional inner product space then the eigenspaces of the restriction of B to any eigenspace of A exhaust that eigenspace.

theorem LinearMap.IsSymmetric.iSup_iSup_eigenspace_inf_eigenspace_eq_top_of_commute {๐•œ : Type u_1} {E : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] {A B : E โ†’โ‚—[๐•œ] E} [FiniteDimensional ๐•œ E] (hA : A.IsSymmetric) (hB : B.IsSymmetric) (hAB : Commute A B) :
โจ† (ฮฑ : ๐•œ), โจ† (ฮณ : ๐•œ), Module.End.eigenspace A ฮฑ โŠ“ Module.End.eigenspace B ฮณ = โŠค

If A and B are commuting symmetric operators acting on a finite dimensional inner product space, then the simultaneous eigenspaces of A and B exhaust the space.

theorem LinearMap.IsSymmetric.directSum_isInternal_of_commute {๐•œ : Type u_1} {E : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] {A B : E โ†’โ‚—[๐•œ] E} [FiniteDimensional ๐•œ E] (hA : A.IsSymmetric) (hB : B.IsSymmetric) (hAB : Commute A B) :

Given a commuting pair of symmetric linear operators on a finite dimensional inner product space, the space decomposes as an internal direct sum of simultaneous eigenspaces of these operators.

theorem LinearMap.IsSymmetric.iSup_iInf_eq_top_of_commute {๐•œ : Type u_1} {E : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] [FiniteDimensional ๐•œ E] {ฮน : Type u_5} {T : ฮน โ†’ E โ†’โ‚—[๐•œ] E} (hT : โˆ€ (i : ฮน), (T i).IsSymmetric) (h : Pairwise (Function.onFun Commute T)) :
โจ† (ฯ‡ : ฮน โ†’ ๐•œ), โจ… (i : ฮน), Module.End.eigenspace (T i) (ฯ‡ i) = โŠค

A commuting family of symmetric linear maps on a finite dimensional inner product space is simultaneously diagonalizable.

theorem LinearMap.IsSymmetric.LinearMap.IsSymmetric.directSum_isInternal_of_pairwise_commute {๐•œ : Type u_1} {E : Type u_2} {n : Type u_3} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] {T : n โ†’ Module.End ๐•œ E} [FiniteDimensional ๐•œ E] [DecidableEq (n โ†’ ๐•œ)] (hT : โˆ€ (i : n), IsSymmetric (T i)) (hC : Pairwise (Function.onFun Commute T)) :
DirectSum.IsInternal fun (ฮฑ : n โ†’ ๐•œ) => โจ… (j : n), (T j).eigenspace (ฮฑ j)

In finite dimensions, given a commuting family of symmetric linear operators, the inner product space on which they act decomposes as an internal direct sum of joint eigenspaces.