Inner product space on Hᵐᵒᵖ
#
This file defines the inner product space structure on Hᵐᵒᵖ
where we define
the inner product naturally. We also define OrthonormalBasis.mulOpposite
.
The inner product of Hᵐᵒᵖ
is given by ⟪x, y⟫ ↦ ⟪x.unop, y.unop⟫
.
Equations
- MulOpposite.instInner = { inner := fun (x y : Hᵐᵒᵖ) => inner 𝕜 (MulOpposite.unop x) (MulOpposite.unop y) }
instance
MulOpposite.instInnerProductSpace
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
:
Equations
- One or more equations did not get rendered due to their size.
theorem
Module.Basis.mulOpposite_is_orthonormal_iff
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
{ι : Type u_3}
(b : Basis ι 𝕜 H)
:
noncomputable def
OrthonormalBasis.mulOpposite
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
{ι : Type u_3}
[Fintype ι]
(b : OrthonormalBasis ι 𝕜 H)
:
OrthonormalBasis ι 𝕜 Hᵐᵒᵖ
The multiplicative opposite of an orthonormal basis b
, i.e., b i ↦ op (b i)
.
Equations
Instances For
theorem
MulOpposite.isometry_opLinearEquiv
{R : Type u_3}
{M : Type u_4}
[Semiring R]
[SeminormedAddCommGroup M]
[Module R M]
:
Isometry ⇑(opLinearEquiv R)
def
MulOpposite.opLinearIsometryEquiv
(𝕜 : Type u_1)
(H : Type u_2)
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
:
The linear isometry equivalence version of the function op
.
Equations
- MulOpposite.opLinearIsometryEquiv 𝕜 H = { toLinearEquiv := MulOpposite.opLinearEquiv 𝕜, norm_map' := ⋯ }
Instances For
@[simp]
theorem
MulOpposite.opLinearIsometryEquiv_apply
(𝕜 : Type u_1)
(H : Type u_2)
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
(a✝ : H)
:
@[simp]
theorem
MulOpposite.opLinearIsometryEquiv_symm_apply
(𝕜 : Type u_1)
(H : Type u_2)
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
(a✝ : Hᵐᵒᵖ)
:
@[simp]
theorem
MulOpposite.toLinearEquiv_opLinearIsometryEquiv
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
:
@[simp]
theorem
MulOpposite.toContinuousLinearEquiv_opLinearIsometryEquiv
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
: