Documentation

Mathlib.Analysis.InnerProductSpace.MulOpposite

Inner product space on Hᵐᵒᵖ #

This file defines the inner product space structure on Hᵐᵒᵖ where we define the inner product naturally. We also define OrthonormalBasis.mulOpposite.

instance MulOpposite.instInner {𝕜 : Type u_1} {H : Type u_2} [Inner 𝕜 H] :

The inner product of Hᵐᵒᵖ is given by ⟪x, y⟫ ↦ ⟪x.unop, y.unop⟫.

Equations
@[simp]
theorem MulOpposite.inner_unop {𝕜 : Type u_1} {H : Type u_2} [Inner 𝕜 H] (x y : Hᵐᵒᵖ) :
inner 𝕜 (unop x) (unop y) = inner 𝕜 x y
@[simp]
theorem MulOpposite.inner_op {𝕜 : Type u_1} {H : Type u_2} [Inner 𝕜 H] (x y : H) :
inner 𝕜 (op x) (op y) = inner 𝕜 x y
Equations
  • One or more equations did not get rendered due to their size.
theorem Module.Basis.mulOpposite_is_orthonormal_iff {𝕜 : Type u_1} {H : Type u_2} [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] {ι : Type u_3} (b : Basis ι 𝕜 H) :
noncomputable def OrthonormalBasis.mulOpposite {𝕜 : Type u_1} {H : Type u_2} [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] {ι : Type u_3} [Fintype ι] (b : OrthonormalBasis ι 𝕜 H) :

The multiplicative opposite of an orthonormal basis b, i.e., b i ↦ op (b i).

Equations
Instances For

    The linear isometry equivalence version of the function op.

    Equations
    Instances For
      @[simp]
      theorem MulOpposite.opLinearIsometryEquiv_apply (𝕜 : Type u_1) (H : Type u_2) [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] (a✝ : H) :
      (opLinearIsometryEquiv 𝕜 H) a✝ = op a✝
      @[simp]
      theorem MulOpposite.opLinearIsometryEquiv_symm_apply (𝕜 : Type u_1) (H : Type u_2) [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] (a✝ : Hᵐᵒᵖ) :
      (opLinearIsometryEquiv 𝕜 H).symm a✝ = unop a✝