Documentation

Mathlib.Analysis.InnerProductSpace.Positive

Positive operators #

In this file we define when an operator in a Hilbert space is positive. We follow Bourbaki's choice of requiring self adjointness in the definition.

Main definitions #

Main statements #

References #

Tags #

Positive operator

def ContinuousLinearMap.IsPositive {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (T : E →L[𝕜] E) :

A continuous linear endomorphism T of a Hilbert space is positive if it is self adjoint and ∀ x, 0 ≤ re ⟪T x, x⟫.

Equations
Instances For
    theorem ContinuousLinearMap.IsPositive.inner_left_eq_inner_right {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (x : E) :
    inner 𝕜 (T x) x = inner 𝕜 x (T x)
    theorem ContinuousLinearMap.IsPositive.re_inner_nonneg_left {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (x : E) :
    0 RCLike.re (inner 𝕜 (T x) x)
    theorem ContinuousLinearMap.IsPositive.re_inner_nonneg_right {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (x : E) :
    0 RCLike.re (inner 𝕜 x (T x))
    theorem ContinuousLinearMap.isPositive_iff {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (T : E →L[𝕜] E) :
    T.IsPositive IsSelfAdjoint T ∀ (x : E), 0 inner 𝕜 (T x) x
    theorem ContinuousLinearMap.IsPositive.inner_nonneg_left {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (x : E) :
    0 inner 𝕜 (T x) x
    theorem ContinuousLinearMap.IsPositive.inner_nonneg_right {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (x : E) :
    0 inner 𝕜 x (T x)
    @[simp]
    theorem ContinuousLinearMap.isPositive_natCast {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {n : } :
    (↑n).IsPositive
    theorem ContinuousLinearMap.IsPositive.add {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T S : E →L[𝕜] E} (hT : T.IsPositive) (hS : S.IsPositive) :
    theorem ContinuousLinearMap.IsPositive.conj_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : T.IsPositive) (S : E →L[𝕜] F) :
    theorem ContinuousLinearMap.IsPositive.adjoint_conj {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : T.IsPositive) (S : F →L[𝕜] E) :
    theorem ContinuousLinearMap.antilipschitz_of_forall_le_inner_map {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_4} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] (f : H →L[𝕜] H) {c : NNReal} (hc : 0 < c) (h : ∀ (x : H), x ^ 2 * c inner 𝕜 (f x) x) :
    theorem ContinuousLinearMap.isUnit_of_forall_le_norm_inner_map {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (f : E →L[𝕜] E) {c : NNReal} (hc : 0 < c) (h : ∀ (x : E), x ^ 2 * c inner 𝕜 (f x) x) :
    theorem ContinuousLinearMap.isPositive_iff_complex {E' : Type u_4} [NormedAddCommGroup E'] [InnerProductSpace E'] [CompleteSpace E'] (T : E' →L[] E') :
    T.IsPositive ∀ (x : E'), (RCLike.re (inner (T x) x)) = inner (T x) x 0 RCLike.re (inner (T x) x)

    The (Loewner) partial order on continuous linear maps on a Hilbert space determined by f ≤ g if and only if g - f is a positive linear map (in the sense of ContinuousLinearMap.IsPositive). With this partial order, the continuous linear maps form a StarOrderedRing.

    Equations
    theorem ContinuousLinearMap.le_def {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (f g : E →L[𝕜] E) :
    f g (g - f).IsPositive
    def LinearMap.IsPositive {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) :

    A linear map T of a Hilbert space is positive if it is self adjoint and ∀ x, 0 ≤ re ⟪T x, x⟫.

    Equations
    Instances For
      theorem LinearMap.IsPositive.isSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) :
      theorem LinearMap.IsPositive.re_inner_nonneg_left {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) (x : E) :
      0 RCLike.re (inner 𝕜 (T x) x)
      theorem LinearMap.IsPositive.re_inner_nonneg_right {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) (x : E) :
      0 RCLike.re (inner 𝕜 x (T x))
      theorem LinearMap.isPositive_iff_complex {E' : Type u_4} [NormedAddCommGroup E'] [InnerProductSpace E'] [FiniteDimensional E'] (T : E' →ₗ[] E') :
      T.IsPositive ∀ (x : E'), (RCLike.re (inner (T x) x)) = inner (T x) x 0 RCLike.re (inner (T x) x)
      theorem LinearMap.IsPositive.isSymmetric {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) :
      theorem LinearMap.isPositive_iff {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) :
      T.IsPositive IsSelfAdjoint T ∀ (x : E), 0 inner 𝕜 (T x) x
      theorem LinearMap.IsPositive.inner_nonneg_left {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) (x : E) :
      0 inner 𝕜 (T x) x
      theorem LinearMap.IsPositive.inner_nonneg_right {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) (x : E) :
      0 inner 𝕜 x (T x)
      @[simp]
      theorem LinearMap.isPositive_zero {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
      @[simp]
      theorem LinearMap.isPositive_one {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
      @[simp]
      theorem LinearMap.isPositive_natCast {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {n : } :
      (↑n).IsPositive
      @[simp]
      theorem LinearMap.isPositive_ofNat {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {n : } [n.AtLeastTwo] :
      theorem LinearMap.IsPositive.add {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T S : E →ₗ[𝕜] E} (hT : T.IsPositive) (hS : S.IsPositive) :
      theorem LinearMap.IsPositive.conj_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) (S : E →ₗ[𝕜] F) :
      theorem LinearMap.IsPositive.adjoint_conj {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {T : E →ₗ[𝕜] E} (hT : T.IsPositive) (S : F →ₗ[𝕜] E) :
      instance LinearMap.instLoewnerPartialOrder {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :

      The (Loewner) partial order on linear maps on a Hilbert space determined by f ≤ g if and only if g - f is a positive linear map (in the sense of LinearMap.IsPositive).

      Equations
      theorem LinearMap.le_def {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (f g : E →ₗ[𝕜] E) :
      f g (g - f).IsPositive
      theorem LinearMap.nonneg_iff_isPositive {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (f : E →ₗ[𝕜] E) :