Documentation

Mathlib.Analysis.MellinTransform

The Mellin transform #

We define the Mellin transform of a locally integrable function on Ioi 0, and show it is differentiable in a suitable vertical strip.

Main statements #

def MellinConvergent {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) :

Predicate on f and s asserting that the Mellin integral is well-defined.

Equations
Instances For
    theorem MellinConvergent.const_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {f : RealE} {s : Complex} (hf : MellinConvergent f s) {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [SMulCommClass Complex 𝕜 E] (c : 𝕜) :
    MellinConvergent (fun (t : Real) => HSMul.hSMul c (f t)) s
    theorem MellinConvergent.div_const {f : RealComplex} {s : Complex} (hf : MellinConvergent f s) (a : Complex) :
    MellinConvergent (fun (t : Real) => HDiv.hDiv (f t) a) s
    theorem MellinConvergent.comp_mul_left {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {f : RealE} {s : Complex} {a : Real} (ha : LT.lt 0 a) :
    Iff (MellinConvergent (fun (t : Real) => f (HMul.hMul a t)) s) (MellinConvergent f s)
    theorem MellinConvergent.comp_rpow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {f : RealE} {s : Complex} {a : Real} (ha : Ne a 0) :
    def Complex.VerticalIntegrable {E : Type u_1} [NormedAddCommGroup E] (f : ComplexE) (σ : Real) (μ : MeasureTheory.Measure Real := by volume_tac) :

    A function f is VerticalIntegrable at σ if y ↦ f(σ + yi) is integrable.

    Equations
    Instances For
      def mellin {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) :
      E

      The Mellin transform of a function f (for a complex exponent s), defined as the integral of t ^ (s - 1) • f over Ioi 0.

      Equations
      Instances For
        def mellinInv {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (σ : Real) (f : ComplexE) (x : Real) :
        E

        The Mellin inverse transform of a function f, defined as 1 / (2π) times the integral of y ↦ x ^ -(σ + yi) • f (σ + yi).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem mellin_cpow_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s a : Complex) :
          Eq (mellin (fun (t : Real) => HSMul.hSMul (HPow.hPow (Complex.ofReal t) a) (f t)) s) (mellin f (HAdd.hAdd s a))
          theorem mellin_const_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [SMulCommClass Complex 𝕜 E] (c : 𝕜) :
          Eq (mellin (fun (t : Real) => HSMul.hSMul c (f t)) s) (HSMul.hSMul c (mellin f s))
          theorem mellin_div_const (f : RealComplex) (s a : Complex) :
          Eq (mellin (fun (t : Real) => HDiv.hDiv (f t) a) s) (HDiv.hDiv (mellin f s) a)
          theorem mellin_comp_rpow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) (a : Real) :
          Eq (mellin (fun (t : Real) => f (HPow.hPow t a)) s) (HSMul.hSMul (Inv.inv (abs a)) (mellin f (HDiv.hDiv s (Complex.ofReal a))))
          theorem mellin_comp_mul_left {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) {a : Real} (ha : LT.lt 0 a) :
          Eq (mellin (fun (t : Real) => f (HMul.hMul a t)) s) (HSMul.hSMul (HPow.hPow (Complex.ofReal a) (Neg.neg s)) (mellin f s))
          theorem mellin_comp_mul_right {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) {a : Real} (ha : LT.lt 0 a) :
          Eq (mellin (fun (t : Real) => f (HMul.hMul t a)) s) (HSMul.hSMul (HPow.hPow (Complex.ofReal a) (Neg.neg s)) (mellin f s))
          theorem mellin_comp_inv {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) :
          Eq (mellin (fun (t : Real) => f (Inv.inv t)) s) (mellin f (Neg.neg s))
          def HasMellin {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] (f : RealE) (s : Complex) (m : E) :

          Predicate standing for "the Mellin transform of f is defined at s and equal to m". This shortens some arguments.

          Equations
          Instances For
            theorem hasMellin_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {f g : RealE} {s : Complex} (hf : MellinConvergent f s) (hg : MellinConvergent g s) :
            HasMellin (fun (t : Real) => HAdd.hAdd (f t) (g t)) s (HAdd.hAdd (mellin f s) (mellin g s))
            theorem hasMellin_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {f g : RealE} {s : Complex} (hf : MellinConvergent f s) (hg : MellinConvergent g s) :
            HasMellin (fun (t : Real) => HSub.hSub (f t) (g t)) s (HSub.hSub (mellin f s) (mellin g s))

            Convergence of Mellin transform integrals #

            Auxiliary lemma to reduce convergence statements from vector-valued functions to real scalar-valued functions.

            If f is a locally integrable real-valued function which is O(x ^ (-a)) at , then for any s < a, its Mellin transform converges on some neighbourhood of +∞.

            If f is a locally integrable real-valued function which is O(x ^ (-b)) at 0, then for any b < s, its Mellin transform converges on some right neighbourhood of 0.

            If f is a locally integrable real-valued function on Ioi 0 which is O(x ^ (-a)) at and O(x ^ (-b)) at 0, then its Mellin transform integral converges for b < s < a.

            theorem isBigO_rpow_top_log_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Real E] {a b : Real} {f : RealE} (hab : LT.lt b a) (hf : Asymptotics.IsBigO Filter.atTop f fun (x : Real) => HPow.hPow x (Neg.neg a)) :
            Asymptotics.IsBigO Filter.atTop (fun (t : Real) => HSMul.hSMul (Real.log t) (f t)) fun (x : Real) => HPow.hPow x (Neg.neg b)

            If f is O(x ^ (-a)) as x → +∞, then log • f is O(x ^ (-b)) for every b < a.

            theorem isBigO_rpow_zero_log_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Real E] {a b : Real} {f : RealE} (hab : LT.lt a b) (hf : Asymptotics.IsBigO (nhdsWithin 0 (Set.Ioi 0)) f fun (x : Real) => HPow.hPow x (Neg.neg a)) :
            Asymptotics.IsBigO (nhdsWithin 0 (Set.Ioi 0)) (fun (t : Real) => HSMul.hSMul (Real.log t) (f t)) fun (x : Real) => HPow.hPow x (Neg.neg b)

            If f is O(x ^ (-a)) as x → 0, then log • f is O(x ^ (-b)) for every a < b.

            theorem mellin_hasDerivAt_of_isBigO_rpow {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {a b : Real} {f : RealE} {s : Complex} (hfc : MeasureTheory.LocallyIntegrableOn f (Set.Ioi 0) MeasureTheory.MeasureSpace.volume) (hf_top : Asymptotics.IsBigO Filter.atTop f fun (x : Real) => HPow.hPow x (Neg.neg a)) (hs_top : LT.lt s.re a) (hf_bot : Asymptotics.IsBigO (nhdsWithin 0 (Set.Ioi 0)) f fun (x : Real) => HPow.hPow x (Neg.neg b)) (hs_bot : LT.lt b s.re) :
            And (MellinConvergent (fun (t : Real) => HSMul.hSMul (Real.log t) (f t)) s) (HasDerivAt (mellin f) (mellin (fun (t : Real) => HSMul.hSMul (Real.log t) (f t)) s) s)

            Suppose f is locally integrable on (0, ∞), is O(x ^ (-a)) as x → ∞, and is O(x ^ (-b)) as x → 0. Then its Mellin transform is differentiable on the domain b < re s < a, with derivative equal to the Mellin transform of log • f.

            Suppose f is locally integrable on (0, ∞), is O(x ^ (-a)) as x → ∞, and is O(x ^ (-b)) as x → 0. Then its Mellin transform is differentiable on the domain b < re s < a.

            If f is locally integrable, decays exponentially at infinity, and is O(x ^ (-b)) at 0, then its Mellin transform converges for b < s.re.

            If f is locally integrable, decays exponentially at infinity, and is O(x ^ (-b)) at 0, then its Mellin transform is holomorphic on b < s.re.

            Mellin transforms of functions on Ioc 0 1 #

            theorem hasMellin_one_Ioc {s : Complex} (hs : LT.lt 0 s.re) :
            HasMellin ((Set.Ioc 0 1).indicator fun (x : Real) => 1) s (HDiv.hDiv 1 s)

            The Mellin transform of the indicator function of Ioc 0 1.

            theorem hasMellin_cpow_Ioc (a : Complex) {s : Complex} (hs : LT.lt 0 (HAdd.hAdd s.re a.re)) :

            The Mellin transform of a power function restricted to Ioc 0 1.