Documentation

Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt

Results on TrivSqZeroExt R M related to the norm #

This file contains results about NormedSpace.exp for TrivSqZeroExt.

It also contains a definition of the $ℓ^1$ norm, which defines $\|r + m\| \coloneqq \|r\| + \|m\|$. This is not a particularly canonical choice of definition, but it is sufficient to provide a NormedAlgebra instance, and thus enables NormedSpace.exp_add_of_commute to be used on TrivSqZeroExt. If the non-canonicity becomes problematic in future, we could keep the collection of instances behind an open scoped.

Main results #

TODO #

@[simp]
theorem TrivSqZeroExt.fst_expSeries (𝕜 : Type u_1) {R : Type u_3} {M : Type u_4} [Field 𝕜] [Ring R] [AddCommGroup M] [Algebra 𝕜 R] [Module 𝕜 M] [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] [IsScalarTower 𝕜 R M] [IsScalarTower 𝕜 Rᵐᵒᵖ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rᵐᵒᵖ M] (x : TrivSqZeroExt R M) (n : ) :
((NormedSpace.expSeries 𝕜 (TrivSqZeroExt R M) n) fun (x_1 : Fin n) => x).fst = (NormedSpace.expSeries 𝕜 R n) fun (x_1 : Fin n) => x.fst
theorem TrivSqZeroExt.snd_expSeries_of_smul_comm (𝕜 : Type u_1) {R : Type u_3} {M : Type u_4} [Field 𝕜] [CharZero 𝕜] [Ring R] [AddCommGroup M] [Algebra 𝕜 R] [Module 𝕜 M] [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] [IsScalarTower 𝕜 R M] [IsScalarTower 𝕜 Rᵐᵒᵖ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rᵐᵒᵖ M] (x : TrivSqZeroExt R M) (hx : MulOpposite.op x.fst x.snd = x.fst x.snd) (n : ) :
((NormedSpace.expSeries 𝕜 (TrivSqZeroExt R M) (n + 1)) fun (x_1 : Fin (n + 1)) => x).snd = ((NormedSpace.expSeries 𝕜 R n) fun (x_1 : Fin n) => x.fst) x.snd
theorem TrivSqZeroExt.hasSum_snd_expSeries_of_smul_comm (𝕜 : Type u_1) {R : Type u_3} {M : Type u_4} [Field 𝕜] [CharZero 𝕜] [Ring R] [AddCommGroup M] [Algebra 𝕜 R] [Module 𝕜 M] [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] [IsScalarTower 𝕜 R M] [IsScalarTower 𝕜 Rᵐᵒᵖ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rᵐᵒᵖ M] (x : TrivSqZeroExt R M) (hx : MulOpposite.op x.fst x.snd = x.fst x.snd) {e : R} (h : HasSum (fun (n : ) => (NormedSpace.expSeries 𝕜 R n) fun (x_1 : Fin n) => x.fst) e) :
HasSum (fun (n : ) => ((NormedSpace.expSeries 𝕜 (TrivSqZeroExt R M) n) fun (x_1 : Fin n) => x).snd) (e x.snd)

If NormedSpace.exp R x.fst converges to e then (NormedSpace.exp R x).snd converges to e • x.snd.

theorem TrivSqZeroExt.hasSum_expSeries_of_smul_comm (𝕜 : Type u_1) {R : Type u_3} {M : Type u_4} [Field 𝕜] [CharZero 𝕜] [Ring R] [AddCommGroup M] [Algebra 𝕜 R] [Module 𝕜 M] [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] [IsScalarTower 𝕜 R M] [IsScalarTower 𝕜 Rᵐᵒᵖ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rᵐᵒᵖ M] (x : TrivSqZeroExt R M) (hx : MulOpposite.op x.fst x.snd = x.fst x.snd) {e : R} (h : HasSum (fun (n : ) => (NormedSpace.expSeries 𝕜 R n) fun (x_1 : Fin n) => x.fst) e) :
HasSum (fun (n : ) => (NormedSpace.expSeries 𝕜 (TrivSqZeroExt R M) n) fun (x_1 : Fin n) => x) (inl e + inr (e x.snd))

If NormedSpace.exp R x.fst converges to e then NormedSpace.exp R x converges to inl e + inr (e • x.snd).

The $ℓ^1$ norm on the trivial square zero extension #

@[simp]
theorem TrivSqZeroExt.norm_inl {R : Type u_3} {M : Type u_4} [SeminormedRing R] [SeminormedAddCommGroup M] (r : R) :
@[simp]
theorem TrivSqZeroExt.norm_inr {R : Type u_3} {M : Type u_4} [SeminormedRing R] [SeminormedAddCommGroup M] (m : M) :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations