Homeomorphism between a normed space and sphere times (0, +∞) #
In this file we define a homeomorphism between nonzero elements of a normed space E
and Metric.sphere (0 : E) 1 × Set.Ioi (0 : ℝ).
One may think about it as generalization of polar coordinates to any normed space.
noncomputable def
homeomorphUnitSphereProd
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
:
The natural homeomorphism between nonzero elements of a normed space E
and Metric.sphere (0 : E) 1 × Set.Ioi (0 : ℝ).
The forward map sends ⟨x, hx⟩ to ⟨‖x‖⁻¹ • x, ‖x‖⟩,
the inverse map sends (x, r) to r • x.
One may think about it as generalization of polar coordinates to any normed space.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
homeomorphUnitSphereProd_apply_snd_coe
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(x : ↑{0}ᶜ)
:
@[simp]
theorem
homeomorphUnitSphereProd_apply_fst_coe
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(x : ↑{0}ᶜ)
:
@[simp]
theorem
homeomorphUnitSphereProd_symm_apply_coe
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(x : ↑(Metric.sphere 0 1) × ↑(Set.Ioi 0))
: