Documentation

Mathlib.Analysis.Normed.Module.ContinuousInverse

Continuous linear maps with a continuous left/right inverse #

This file defines continuous linear maps which admit a continuous left/right inverse.

We prove that both of these classes of maps are closed under products, composition and contain linear equivalences, and a sufficient criterion in finite dimension: a surjective linear map on a finite-dimensional space always admits a continuous right inverse; an injective linear map on a finite-dimensional space always admits a continuous left inverse.

This concept is used to give an equivalent definition of immersions and submersions of manifolds.

Main definitions and results #

TODO #

def ContinuousLinearMap.HasLeftInverse {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] (f : E →L[R] F) :

A continuous linear map admits a left inverse which is a continuous linear map itself.

Equations
Instances For
    def ContinuousLinearMap.HasRightInverse {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] (f : E →L[R] F) :

    A continuous linear map admits a right inverse which is a continuous linear map itself.

    Equations
    Instances For

      Choice of continuous left inverse for f : F →L[R] E, given that such an inverse exists.

      Equations
      Instances For
        theorem ContinuousLinearMap.HasLeftInverse.congr {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] {f g : E →L[R] F} (hf : f.HasLeftInverse) (hfg : g = f) :
        theorem ContinuousLinearEquiv.hasLeftInverse {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] (f : E ≃L[R] F) :

        A continuous linear equivalence has a continuous left inverse.

        @[simp]

        An invertible continuous linear map has a continuous left inverse.

        theorem ContinuousLinearMap.HasLeftInverse.prodMap {R : Type u_1} [Semiring R] {E : Type u_2} {E' : Type u_3} {F : Type u_4} {F' : Type u_5} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace E'] [AddCommMonoid E'] [Module R E'] [TopologicalSpace F] [AddCommMonoid F] [Module R F] [TopologicalSpace F'] [AddCommMonoid F'] [Module R F'] {f : E →L[R] F} {g : E' →L[R] F'} (hf : f.HasLeftInverse) (hg : g.HasLeftInverse) :

        If f and g admit continuous left inverses, so does f × g.

        theorem ContinuousLinearMap.HasLeftInverse.comp {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} {G : Type u_6} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] {f : E →L[R] F} [TopologicalSpace G] [AddCommMonoid G] [Module R G] {g : F →L[R] G} (hg : g.HasLeftInverse) (hf : f.HasLeftInverse) :
        theorem ContinuousLinearMap.HasLeftInverse.of_comp {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} {G : Type u_6} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] {f : E →L[R] F} [TopologicalSpace G] [AddCommMonoid G] [Module R G] {g : F →L[R] G} (hfg : (g.comp f).HasLeftInverse) :
        theorem ContinuousLinearMap.HasLeftInverse.comp_continuousLinearEquivalence {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} {F' : Type u_5} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] [TopologicalSpace F'] [AddCommMonoid F'] [Module R F'] {f : E →L[R] F} {f₀ : F' ≃L[R] E} (hf : f.HasLeftInverse) :
        (f.comp f₀).HasLeftInverse

        ContinuousLinearMap.inl has a continuous left inverse.

        ContinuousLinearMap.inr has a continuous left inverse.

        If f : E → F is injective and E is finite-dimensional, f has a continuous left inverse.

        Choice of continuous right inverse for f : F →L[R] E, given that such an inverse exists.

        Equations
        Instances For
          theorem ContinuousLinearMap.HasRightInverse.congr {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] {f g : E →L[R] F} (hf : f.HasRightInverse) (hfg : g = f) :
          theorem ContinuousLinearEquiv.hasRightInverse {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] (f : E ≃L[R] F) :

          A continuous linear equivalence has a continuous right inverse.

          @[simp]

          An invertible continuous linear map splits.

          theorem ContinuousLinearMap.HasRightInverse.prodMap {R : Type u_1} [Semiring R] {E : Type u_2} {E' : Type u_3} {F : Type u_4} {F' : Type u_5} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace E'] [AddCommMonoid E'] [Module R E'] [TopologicalSpace F] [AddCommMonoid F] [Module R F] [TopologicalSpace F'] [AddCommMonoid F'] [Module R F'] {f : E →L[R] F} {g : E' →L[R] F'} (hf : f.HasRightInverse) (hg : g.HasRightInverse) :

          If f and g split, then so does f × g.

          theorem ContinuousLinearMap.HasRightInverse.comp {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} {G : Type u_6} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] {f : E →L[R] F} [TopologicalSpace G] [AddCommMonoid G] [Module R G] {g : F →L[R] G} (hg : g.HasRightInverse) (hf : f.HasRightInverse) :
          theorem ContinuousLinearMap.HasRightInverse.of_comp {R : Type u_1} [Semiring R] {E : Type u_2} {F : Type u_4} {G : Type u_6} [TopologicalSpace E] [AddCommMonoid E] [Module R E] [TopologicalSpace F] [AddCommMonoid F] [Module R F] {f : E →L[R] F} [TopologicalSpace G] [AddCommMonoid G] [Module R G] {g : F →L[R] G} (hfg : (g.comp f).HasRightInverse) :

          ContinuousLinearMap.fst has a continuous right inverse.

          ContinuousLinearMap.snd has a continuous right inverse.

          If f : E → F is surjective and F is finite-dimensional, f has a continuous right inverse.