Documentation

Mathlib.Analysis.NormedSpace.AffineIsometry

Affine isometries #

In this file we define AffineIsometry 𝕜 P P₂ to be an affine isometric embedding of normed add-torsors P into P₂ over normed 𝕜-spaces and AffineIsometryEquiv to be an affine isometric equivalence between P and P₂.

We also prove basic lemmas and provide convenience constructors. The choice of these lemmas and constructors is closely modelled on those for the LinearIsometry and AffineMap theories.

Since many elementary properties don't require ‖x‖ = 0 → x = 0 we initially set up the theory for SeminormedAddCommGroup and specialize to NormedAddCommGroup only when needed.

Notation #

We introduce the notation P →ᵃⁱ[𝕜] P₂ for AffineIsometry 𝕜 P P₂, and P ≃ᵃⁱ[𝕜] P₂ for AffineIsometryEquiv 𝕜 P P₂. In contrast with the notation →ₗᵢ for linear isometries, ≃ᵢ for isometric equivalences, etc., the "i" here is a superscript. This is for aesthetic reasons to match the superscript "a" (note that in mathlib →ᵃ is an affine map, since →ₐ has been taken by algebra-homomorphisms.)

structure AffineIsometry (𝕜 : Type u_1) {V : Type u_2} {V₂ : Type u_4} (P : Type u_8) (P₂ : Type u_9) [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] extends AffineMap :
Type (max (max (max u_2 u_4) u_8) u_9)

A 𝕜-affine isometric embedding of one normed add-torsor over a normed 𝕜-space into another.

Instances For
    def AffineIsometry.linearIsometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
    V →ₗᵢ[𝕜] V₂

    The underlying linear map of an affine isometry is in fact a linear isometry.

    Instances For
      @[simp]
      theorem AffineIsometry.linear_eq_linearIsometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
      f.linear = (AffineIsometry.linearIsometry f).toLinearMap
      instance AffineIsometry.instFunLikeAffineIsometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] :
      FunLike (P →ᵃⁱ[𝕜] P₂) P fun x => P₂
      @[simp]
      theorem AffineIsometry.coe_toAffineMap {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
      f.toAffineMap = f
      theorem AffineIsometry.toAffineMap_injective {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] :
      Function.Injective AffineIsometry.toAffineMap
      theorem AffineIsometry.coeFn_injective {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] :
      Function.Injective FunLike.coe
      theorem AffineIsometry.ext {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] {f : P →ᵃⁱ[𝕜] P₂} {g : P →ᵃⁱ[𝕜] P₂} (h : ∀ (x : P), f x = g x) :
      f = g
      def LinearIsometry.toAffineIsometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] (f : V →ₗᵢ[𝕜] V₂) :
      V →ᵃⁱ[𝕜] V₂

      Reinterpret a linear isometry as an affine isometry.

      Instances For
        @[simp]
        theorem LinearIsometry.coe_toAffineIsometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] (f : V →ₗᵢ[𝕜] V₂) :
        @[simp]
        theorem LinearIsometry.toAffineIsometry_toAffineMap {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] (f : V →ₗᵢ[𝕜] V₂) :
        @[simp]
        theorem AffineIsometry.map_vadd {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) (p : P) (v : V) :
        f (v +ᵥ p) = ↑(AffineIsometry.linearIsometry f) v +ᵥ f p
        @[simp]
        theorem AffineIsometry.map_vsub {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) (p1 : P) (p2 : P) :
        ↑(AffineIsometry.linearIsometry f) (p1 -ᵥ p2) = f p1 -ᵥ f p2
        @[simp]
        theorem AffineIsometry.dist_map {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) (x : P) (y : P) :
        dist (f x) (f y) = dist x y
        @[simp]
        theorem AffineIsometry.nndist_map {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) (x : P) (y : P) :
        nndist (f x) (f y) = nndist x y
        @[simp]
        theorem AffineIsometry.edist_map {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) (x : P) (y : P) :
        edist (f x) (f y) = edist x y
        theorem AffineIsometry.isometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
        theorem AffineIsometry.injective {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (f₁ : P₁ →ᵃⁱ[𝕜] P₂) :
        @[simp]
        theorem AffineIsometry.map_eq_iff {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (f₁ : P₁ →ᵃⁱ[𝕜] P₂) {x : P₁} {y : P₁} :
        f₁ x = f₁ y x = y
        theorem AffineIsometry.map_ne {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (f₁ : P₁ →ᵃⁱ[𝕜] P₂) {x : P₁} {y : P₁} (h : x y) :
        f₁ x f₁ y
        theorem AffineIsometry.lipschitz {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
        theorem AffineIsometry.antilipschitz {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
        theorem AffineIsometry.continuous {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
        theorem AffineIsometry.ediam_image {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) (s : Set P) :
        theorem AffineIsometry.ediam_range {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
        theorem AffineIsometry.diam_image {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) (s : Set P) :
        theorem AffineIsometry.diam_range {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
        @[simp]
        theorem AffineIsometry.comp_continuous_iff {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) {α : Type u_12} [TopologicalSpace α] {g : αP} :
        def AffineIsometry.id {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
        P →ᵃⁱ[𝕜] P

        The identity affine isometry.

        Instances For
          @[simp]
          theorem AffineIsometry.coe_id {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
          AffineIsometry.id = id
          @[simp]
          theorem AffineIsometry.id_apply {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (x : P) :
          AffineIsometry.id x = x
          @[simp]
          theorem AffineIsometry.id_toAffineMap {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
          AffineIsometry.id.toAffineMap = AffineMap.id 𝕜 P
          def AffineIsometry.comp {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {V₃ : Type u_5} {P : Type u_8} {P₂ : Type u_9} {P₃ : Type u_10} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [SeminormedAddCommGroup V₃] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [NormedSpace 𝕜 V₃] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [PseudoMetricSpace P₃] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] [NormedAddTorsor V₃ P₃] (g : P₂ →ᵃⁱ[𝕜] P₃) (f : P →ᵃⁱ[𝕜] P₂) :
          P →ᵃⁱ[𝕜] P₃

          Composition of affine isometries.

          Instances For
            @[simp]
            theorem AffineIsometry.coe_comp {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {V₃ : Type u_5} {P : Type u_8} {P₂ : Type u_9} {P₃ : Type u_10} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [SeminormedAddCommGroup V₃] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [NormedSpace 𝕜 V₃] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [PseudoMetricSpace P₃] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] [NormedAddTorsor V₃ P₃] (g : P₂ →ᵃⁱ[𝕜] P₃) (f : P →ᵃⁱ[𝕜] P₂) :
            ↑(AffineIsometry.comp g f) = g f
            @[simp]
            theorem AffineIsometry.id_comp {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
            AffineIsometry.comp AffineIsometry.id f = f
            @[simp]
            theorem AffineIsometry.comp_id {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (f : P →ᵃⁱ[𝕜] P₂) :
            AffineIsometry.comp f AffineIsometry.id = f
            theorem AffineIsometry.comp_assoc {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {V₃ : Type u_5} {V₄ : Type u_6} {P : Type u_8} {P₂ : Type u_9} {P₃ : Type u_10} {P₄ : Type u_11} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [SeminormedAddCommGroup V₃] [SeminormedAddCommGroup V₄] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [NormedSpace 𝕜 V₃] [NormedSpace 𝕜 V₄] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [PseudoMetricSpace P₃] [PseudoMetricSpace P₄] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] [NormedAddTorsor V₃ P₃] [NormedAddTorsor V₄ P₄] (f : P₃ →ᵃⁱ[𝕜] P₄) (g : P₂ →ᵃⁱ[𝕜] P₃) (h : P →ᵃⁱ[𝕜] P₂) :
            @[simp]
            theorem AffineIsometry.coe_one {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
            1 = id
            @[simp]
            theorem AffineIsometry.coe_mul {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (f : P →ᵃⁱ[𝕜] P) (g : P →ᵃⁱ[𝕜] P) :
            ↑(f * g) = f g
            def AffineSubspace.subtypeₐᵢ {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (s : AffineSubspace 𝕜 P) [Nonempty { x // x s }] :
            { x // x s } →ᵃⁱ[𝕜] P

            AffineSubspace.subtype as an AffineIsometry.

            Instances For
              @[simp]
              @[simp]
              structure AffineIsometryEquiv (𝕜 : Type u_1) {V : Type u_2} {V₂ : Type u_4} (P : Type u_8) (P₂ : Type u_9) [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] extends AffineEquiv :
              Type (max (max (max u_2 u_4) u_8) u_9)

              An affine isometric equivalence between two normed vector spaces.

              Instances For
                def AffineIsometryEquiv.linearIsometryEquiv {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                V ≃ₗᵢ[𝕜] V₂

                The underlying linear equiv of an affine isometry equiv is in fact a linear isometry equiv.

                Instances For
                  @[simp]
                  theorem AffineIsometryEquiv.linear_eq_linear_isometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                  e.linear = (AffineIsometryEquiv.linearIsometryEquiv e).toLinearEquiv
                  instance AffineIsometryEquiv.instEquivLikeAffineIsometryEquiv {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] :
                  EquivLike (P ≃ᵃⁱ[𝕜] P₂) P P₂
                  @[simp]
                  theorem AffineIsometryEquiv.coe_mk {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃ[𝕜] P₂) (he : ∀ (x : V), e.linear x = x) :
                  { toAffineEquiv := e, norm_map := he } = e
                  @[simp]
                  theorem AffineIsometryEquiv.coe_toAffineEquiv {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                  e.toAffineEquiv = e
                  theorem AffineIsometryEquiv.toAffineEquiv_injective {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] :
                  Function.Injective AffineIsometryEquiv.toAffineEquiv
                  theorem AffineIsometryEquiv.ext {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] {e : P ≃ᵃⁱ[𝕜] P₂} {e' : P ≃ᵃⁱ[𝕜] P₂} (h : ∀ (x : P), e x = e' x) :
                  e = e'
                  def AffineIsometryEquiv.toAffineIsometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                  P →ᵃⁱ[𝕜] P₂

                  Reinterpret an AffineIsometryEquiv as an AffineIsometry.

                  Instances For
                    @[simp]
                    theorem AffineIsometryEquiv.coe_toAffineIsometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                    def AffineIsometryEquiv.mk' {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (e : P₁P₂) (e' : V₁ ≃ₗᵢ[𝕜] V₂) (p : P₁) (h : ∀ (p' : P₁), e p' = e' (p' -ᵥ p) +ᵥ e p) :
                    P₁ ≃ᵃⁱ[𝕜] P₂

                    Construct an affine isometry equivalence by verifying the relation between the map and its linear part at one base point. Namely, this function takes a map e : P₁ → P₂, a linear isometry equivalence e' : V₁ ≃ᵢₗ[k] V₂, and a point p such that for any other point p' we have e p' = e' (p' -ᵥ p) +ᵥ e p.

                    Instances For
                      @[simp]
                      theorem AffineIsometryEquiv.coe_mk' {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (e : P₁P₂) (e' : V₁ ≃ₗᵢ[𝕜] V₂) (p : P₁) (h : ∀ (p' : P₁), e p' = e' (p' -ᵥ p) +ᵥ e p) :
                      ↑(AffineIsometryEquiv.mk' e e' p h) = e
                      @[simp]
                      theorem AffineIsometryEquiv.linearIsometryEquiv_mk' {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (e : P₁P₂) (e' : V₁ ≃ₗᵢ[𝕜] V₂) (p : P₁) (h : ∀ (p' : P₁), e p' = e' (p' -ᵥ p) +ᵥ e p) :
                      def LinearIsometryEquiv.toAffineIsometryEquiv {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] (e : V ≃ₗᵢ[𝕜] V₂) :
                      V ≃ᵃⁱ[𝕜] V₂

                      Reinterpret a linear isometry equiv as an affine isometry equiv.

                      Instances For
                        @[simp]
                        @[simp]
                        theorem AffineIsometryEquiv.isometry {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                        def AffineIsometryEquiv.toIsometryEquiv {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                        P ≃ᵢ P₂

                        Reinterpret an AffineIsometryEquiv as an IsometryEquiv.

                        Instances For
                          @[simp]
                          theorem AffineIsometryEquiv.coe_toIsometryEquiv {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                          theorem AffineIsometryEquiv.range_eq_univ {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                          Set.range e = Set.univ
                          def AffineIsometryEquiv.toHomeomorph {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                          P ≃ₜ P₂

                          Reinterpret an AffineIsometryEquiv as a Homeomorph.

                          Instances For
                            @[simp]
                            theorem AffineIsometryEquiv.coe_toHomeomorph {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                            theorem AffineIsometryEquiv.continuous {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                            theorem AffineIsometryEquiv.continuousAt {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) {x : P} :
                            ContinuousAt (e) x
                            theorem AffineIsometryEquiv.continuousOn {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) {s : Set P} :
                            ContinuousOn (e) s
                            theorem AffineIsometryEquiv.continuousWithinAt {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) {s : Set P} {x : P} :
                            def AffineIsometryEquiv.refl (𝕜 : Type u_1) {V : Type u_2} (P : Type u_8) [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
                            P ≃ᵃⁱ[𝕜] P

                            Identity map as an AffineIsometryEquiv.

                            Instances For
                              @[simp]
                              theorem AffineIsometryEquiv.coe_refl {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
                              @[simp]
                              theorem AffineIsometryEquiv.toAffineEquiv_refl {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
                              (AffineIsometryEquiv.refl 𝕜 P).toAffineEquiv = AffineEquiv.refl 𝕜 P
                              def AffineIsometryEquiv.symm {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                              P₂ ≃ᵃⁱ[𝕜] P

                              The inverse AffineIsometryEquiv.

                              Instances For
                                @[simp]
                                theorem AffineIsometryEquiv.apply_symm_apply {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (x : P₂) :
                                e (↑(AffineIsometryEquiv.symm e) x) = x
                                @[simp]
                                theorem AffineIsometryEquiv.symm_apply_apply {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (x : P) :
                                ↑(AffineIsometryEquiv.symm e) (e x) = x
                                @[simp]
                                theorem AffineIsometryEquiv.symm_symm {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                @[simp]
                                theorem AffineIsometryEquiv.toAffineEquiv_symm {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                AffineEquiv.symm e.toAffineEquiv = (AffineIsometryEquiv.symm e).toAffineEquiv
                                def AffineIsometryEquiv.trans {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {V₃ : Type u_5} {P : Type u_8} {P₂ : Type u_9} {P₃ : Type u_10} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [SeminormedAddCommGroup V₃] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [NormedSpace 𝕜 V₃] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [PseudoMetricSpace P₃] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] [NormedAddTorsor V₃ P₃] (e : P ≃ᵃⁱ[𝕜] P₂) (e' : P₂ ≃ᵃⁱ[𝕜] P₃) :
                                P ≃ᵃⁱ[𝕜] P₃

                                Composition of AffineIsometryEquivs as an AffineIsometryEquiv.

                                Instances For
                                  @[simp]
                                  theorem AffineIsometryEquiv.coe_trans {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {V₃ : Type u_5} {P : Type u_8} {P₂ : Type u_9} {P₃ : Type u_10} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [SeminormedAddCommGroup V₃] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [NormedSpace 𝕜 V₃] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [PseudoMetricSpace P₃] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] [NormedAddTorsor V₃ P₃] (e₁ : P ≃ᵃⁱ[𝕜] P₂) (e₂ : P₂ ≃ᵃⁱ[𝕜] P₃) :
                                  ↑(AffineIsometryEquiv.trans e₁ e₂) = e₂ e₁
                                  @[simp]
                                  theorem AffineIsometryEquiv.trans_refl {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  @[simp]
                                  theorem AffineIsometryEquiv.refl_trans {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  @[simp]
                                  @[simp]
                                  theorem AffineIsometryEquiv.symm_trans_self {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  @[simp]
                                  theorem AffineIsometryEquiv.coe_symm_trans {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {V₃ : Type u_5} {P : Type u_8} {P₂ : Type u_9} {P₃ : Type u_10} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [SeminormedAddCommGroup V₃] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [NormedSpace 𝕜 V₃] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [PseudoMetricSpace P₃] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] [NormedAddTorsor V₃ P₃] (e₁ : P ≃ᵃⁱ[𝕜] P₂) (e₂ : P₂ ≃ᵃⁱ[𝕜] P₃) :
                                  theorem AffineIsometryEquiv.trans_assoc {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {V₃ : Type u_5} {V₄ : Type u_6} {P : Type u_8} {P₂ : Type u_9} {P₃ : Type u_10} {P₄ : Type u_11} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [SeminormedAddCommGroup V₃] [SeminormedAddCommGroup V₄] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [NormedSpace 𝕜 V₃] [NormedSpace 𝕜 V₄] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [PseudoMetricSpace P₃] [PseudoMetricSpace P₄] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] [NormedAddTorsor V₃ P₃] [NormedAddTorsor V₄ P₄] (ePP₂ : P ≃ᵃⁱ[𝕜] P₂) (eP₂G : P₂ ≃ᵃⁱ[𝕜] P₃) (eGG' : P₃ ≃ᵃⁱ[𝕜] P₄) :

                                  The group of affine isometries of a NormedAddTorsor, P.

                                  @[simp]
                                  theorem AffineIsometryEquiv.coe_one {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] :
                                  1 = id
                                  @[simp]
                                  theorem AffineIsometryEquiv.coe_mul {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (e : P ≃ᵃⁱ[𝕜] P) (e' : P ≃ᵃⁱ[𝕜] P) :
                                  ↑(e * e') = e e'
                                  @[simp]
                                  theorem AffineIsometryEquiv.coe_inv {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (e : P ≃ᵃⁱ[𝕜] P) :
                                  @[simp]
                                  theorem AffineIsometryEquiv.map_vadd {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (p : P) (v : V) :
                                  @[simp]
                                  theorem AffineIsometryEquiv.map_vsub {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (p1 : P) (p2 : P) :
                                  ↑(AffineIsometryEquiv.linearIsometryEquiv e) (p1 -ᵥ p2) = e p1 -ᵥ e p2
                                  @[simp]
                                  theorem AffineIsometryEquiv.dist_map {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (x : P) (y : P) :
                                  dist (e x) (e y) = dist x y
                                  @[simp]
                                  theorem AffineIsometryEquiv.edist_map {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (x : P) (y : P) :
                                  edist (e x) (e y) = edist x y
                                  theorem AffineIsometryEquiv.bijective {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  theorem AffineIsometryEquiv.injective {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  theorem AffineIsometryEquiv.surjective {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  theorem AffineIsometryEquiv.map_eq_iff {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) {x : P} {y : P} :
                                  e x = e y x = y
                                  theorem AffineIsometryEquiv.map_ne {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) {x : P} {y : P} (h : x y) :
                                  e x e y
                                  theorem AffineIsometryEquiv.lipschitz {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  theorem AffineIsometryEquiv.antilipschitz {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) :
                                  @[simp]
                                  theorem AffineIsometryEquiv.ediam_image {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (s : Set P) :
                                  @[simp]
                                  theorem AffineIsometryEquiv.diam_image {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) (s : Set P) :
                                  @[simp]
                                  theorem AffineIsometryEquiv.comp_continuousOn_iff {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) {α : Type u_12} [TopologicalSpace α] {f : αP} {s : Set α} :
                                  @[simp]
                                  theorem AffineIsometryEquiv.comp_continuous_iff {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] (e : P ≃ᵃⁱ[𝕜] P₂) {α : Type u_12} [TopologicalSpace α] {f : αP} :
                                  def AffineIsometryEquiv.vaddConst (𝕜 : Type u_1) {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (p : P) :
                                  V ≃ᵃⁱ[𝕜] P

                                  The map v ↦ v +ᵥ p as an affine isometric equivalence between V and P.

                                  Instances For
                                    @[simp]
                                    theorem AffineIsometryEquiv.coe_vaddConst {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (p : P) :
                                    ↑(AffineIsometryEquiv.vaddConst 𝕜 p) = fun v => v +ᵥ p
                                    @[simp]
                                    theorem AffineIsometryEquiv.coe_vaddConst' {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (p : P) :
                                    ↑(AffineEquiv.vaddConst 𝕜 p) = fun v => v +ᵥ p
                                    @[simp]
                                    @[simp]
                                    def AffineIsometryEquiv.constVSub (𝕜 : Type u_1) {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (p : P) :
                                    P ≃ᵃⁱ[𝕜] V

                                    p' ↦ p -ᵥ p' as an affine isometric equivalence.

                                    Instances For
                                      @[simp]
                                      theorem AffineIsometryEquiv.coe_constVSub {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (p : P) :
                                      ↑(AffineIsometryEquiv.constVSub 𝕜 p) = (fun x x_1 => x -ᵥ x_1) p
                                      def AffineIsometryEquiv.constVAdd (𝕜 : Type u_1) {V : Type u_2} (P : Type u_8) [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (v : V) :
                                      P ≃ᵃⁱ[𝕜] P

                                      Translation by v (that is, the map p ↦ v +ᵥ p) as an affine isometric automorphism of P.

                                      Instances For
                                        @[simp]
                                        theorem AffineIsometryEquiv.coe_constVAdd {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (v : V) :
                                        ↑(AffineIsometryEquiv.constVAdd 𝕜 P v) = (fun x x_1 => x +ᵥ x_1) v
                                        theorem AffineIsometryEquiv.vadd_vsub {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] {f : PP₂} (hf : Isometry f) {p : P} {g : VV₂} (hg : ∀ (v : V), g v = f (v +ᵥ p) -ᵥ f p) :

                                        The map g from V to V₂ corresponding to a map f from P to P₂, at a base point p, is an isometry if f is one.

                                        def AffineIsometryEquiv.pointReflection (𝕜 : Type u_1) {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (x : P) :
                                        P ≃ᵃⁱ[𝕜] P

                                        Point reflection in x as an affine isometric automorphism.

                                        Instances For
                                          theorem AffineIsometryEquiv.pointReflection_apply {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (x : P) (y : P) :
                                          @[simp]
                                          @[simp]
                                          theorem AffineIsometryEquiv.dist_pointReflection_fixed {𝕜 : Type u_1} {V : Type u_2} {P : Type u_8} [NormedField 𝕜] [SeminormedAddCommGroup V] [NormedSpace 𝕜 V] [PseudoMetricSpace P] [NormedAddTorsor V P] (x : P) (y : P) :
                                          theorem AffineMap.continuous_linear_iff {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] {f : P →ᵃ[𝕜] P₂} :
                                          Continuous f.linear Continuous f

                                          If f is an affine map, then its linear part is continuous iff f is continuous.

                                          theorem AffineMap.isOpenMap_linear_iff {𝕜 : Type u_1} {V : Type u_2} {V₂ : Type u_4} {P : Type u_8} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V] [NormedSpace 𝕜 V₂] [PseudoMetricSpace P] [PseudoMetricSpace P₂] [NormedAddTorsor V P] [NormedAddTorsor V₂ P₂] {f : P →ᵃ[𝕜] P₂} :
                                          IsOpenMap f.linear IsOpenMap f

                                          If f is an affine map, then its linear part is an open map iff f is an open map.

                                          @[simp]
                                          theorem AffineSubspace.equivMapOfInjective_toFun {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] (φ : P₁ →ᵃ[𝕜] P₂) (hφ : Function.Injective φ) :
                                          ∀ (a : E), ↑(AffineSubspace.equivMapOfInjective E φ ) a = Equiv.toFun (Equiv.Set.image (φ) (E) ) a
                                          @[simp]
                                          theorem AffineSubspace.linear_equivMapOfInjective {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] (φ : P₁ →ᵃ[𝕜] P₂) (hφ : Function.Injective φ) :
                                          @[simp]
                                          theorem AffineSubspace.equivMapOfInjective_symm_apply {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] (φ : P₁ →ᵃ[𝕜] P₂) (hφ : Function.Injective φ) :
                                          ∀ (a : ↑(φ '' E)), ↑(AffineEquiv.symm (AffineSubspace.equivMapOfInjective E φ )) a = Equiv.invFun (Equiv.Set.image (φ) (E) ) a
                                          @[simp]
                                          theorem AffineSubspace.equivMapOfInjective_apply {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] (φ : P₁ →ᵃ[𝕜] P₂) (hφ : Function.Injective φ) :
                                          ∀ (a : E), ↑(AffineSubspace.equivMapOfInjective E φ ) a = Equiv.toFun (Equiv.Set.image (φ) (E) ) a
                                          @[simp]
                                          theorem AffineSubspace.equivMapOfInjective_invFun {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] (φ : P₁ →ᵃ[𝕜] P₂) (hφ : Function.Injective φ) :
                                          ∀ (a : ↑(φ '' E)), Equiv.invFun (AffineSubspace.equivMapOfInjective E φ ).toEquiv a = Equiv.invFun (Equiv.Set.image (φ) (E) ) a
                                          noncomputable def AffineSubspace.equivMapOfInjective {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] (φ : P₁ →ᵃ[𝕜] P₂) (hφ : Function.Injective φ) :
                                          { x // x E } ≃ᵃ[𝕜] { x // x AffineSubspace.map φ E }

                                          An affine subspace is isomorphic to its image under an injective affine map. This is the affine version of Submodule.equivMapOfInjective.

                                          Instances For
                                            noncomputable def AffineSubspace.isometryEquivMap {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (φ : P₁ →ᵃⁱ[𝕜] P₂) (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] :
                                            { x // x E } ≃ᵃⁱ[𝕜] { x // x AffineSubspace.map φ.toAffineMap E }

                                            Restricts an affine isometry to an affine isometry equivalence between a nonempty affine subspace E and its image.

                                            This is an isometry version of AffineSubspace.equivMap, having a stronger premise and a stronger conclusion.

                                            Instances For
                                              @[simp]
                                              theorem AffineSubspace.isometryEquivMap.apply_symm_apply {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] {E : AffineSubspace 𝕜 P₁} [Nonempty { x // x E }] {φ : P₁ →ᵃⁱ[𝕜] P₂} (x : { x // x AffineSubspace.map φ.toAffineMap E }) :
                                              @[simp]
                                              theorem AffineSubspace.isometryEquivMap.coe_apply {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (φ : P₁ →ᵃⁱ[𝕜] P₂) (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] (g : { x // x E }) :
                                              ↑(↑(AffineSubspace.isometryEquivMap φ E) g) = φ g
                                              @[simp]
                                              theorem AffineSubspace.isometryEquivMap.toAffineMap_eq {𝕜 : Type u_1} {V₁ : Type u_3} {V₂ : Type u_4} {P₁ : Type u_7} {P₂ : Type u_9} [NormedField 𝕜] [SeminormedAddCommGroup V₁] [SeminormedAddCommGroup V₂] [NormedSpace 𝕜 V₁] [NormedSpace 𝕜 V₂] [MetricSpace P₁] [PseudoMetricSpace P₂] [NormedAddTorsor V₁ P₁] [NormedAddTorsor V₂ P₂] (φ : P₁ →ᵃⁱ[𝕜] P₂) (E : AffineSubspace 𝕜 P₁) [Nonempty { x // x E }] :
                                              (AffineSubspace.isometryEquivMap φ E).toAffineEquiv = ↑(AffineSubspace.equivMapOfInjective E φ.toAffineMap (_ : Function.Injective φ))