Documentation

Mathlib.Analysis.SpecialFunctions.Arsinh

Inverse of the sinh function #

In this file we prove that sinh is bijective and hence has an inverse, arsinh.

Main definitions #

Main Results #

Tags #

arsinh, arcsinh, argsinh, asinh, sinh injective, sinh bijective, sinh surjective

def Real.arsinh (x : ) :

arsinh is defined using a logarithm, arsinh x = log (x + sqrt(1 + x^2)).

Equations
  • x.arsinh = (x + (1 + x ^ 2).sqrt).log
Instances For
    theorem Real.exp_arsinh (x : ) :
    x.arsinh.exp = x + (1 + x ^ 2).sqrt
    @[simp]
    @[simp]
    theorem Real.arsinh_neg (x : ) :
    (-x).arsinh = -x.arsinh
    @[simp]
    theorem Real.sinh_arsinh (x : ) :
    x.arsinh.sinh = x

    arsinh is the right inverse of sinh.

    @[simp]
    theorem Real.cosh_arsinh (x : ) :
    x.arsinh.cosh = (1 + x ^ 2).sqrt

    sinh is surjective, ∀ b, ∃ a, sinh a = b. In this case, we use a = arsinh b.

    sinh is bijective, both injective and surjective.

    @[simp]
    theorem Real.arsinh_sinh (x : ) :
    x.sinh.arsinh = x

    arsinh is the left inverse of sinh.

    @[simp]
    theorem Real.sinhEquiv_symm_apply (x : ) :
    Real.sinhEquiv.symm x = x.arsinh
    @[simp]
    theorem Real.sinhEquiv_apply (x : ) :
    Real.sinhEquiv x = x.sinh

    Real.sinh as an Equiv.

    Equations
    Instances For

      Real.sinh as an OrderIso.

      Equations
      Instances For
        @[simp]
        theorem Real.arsinh_inj {x : } {y : } :
        x.arsinh = y.arsinh x = y
        @[simp]
        theorem Real.arsinh_le_arsinh {x : } {y : } :
        x.arsinh y.arsinh x y
        theorem Real.GCongr.arsinh_le_arsinh {x : } {y : } :
        x yx.arsinh y.arsinh

        Alias of the reverse direction of Real.arsinh_le_arsinh.

        @[simp]
        theorem Real.arsinh_lt_arsinh {x : } {y : } :
        x.arsinh < y.arsinh x < y
        @[simp]
        theorem Real.arsinh_eq_zero_iff {x : } :
        x.arsinh = 0 x = 0
        @[simp]
        theorem Real.arsinh_nonneg_iff {x : } :
        0 x.arsinh 0 x
        @[simp]
        theorem Real.arsinh_nonpos_iff {x : } :
        x.arsinh 0 x 0
        @[simp]
        theorem Real.arsinh_pos_iff {x : } :
        0 < x.arsinh 0 < x
        @[simp]
        theorem Real.arsinh_neg_iff {x : } :
        x.arsinh < 0 x < 0
        theorem Filter.Tendsto.arsinh {α : Type u_1} {l : Filter α} {f : α} {a : } (h : Filter.Tendsto f l (nhds a)) :
        Filter.Tendsto (fun (x : α) => (f x).arsinh) l (nhds a.arsinh)
        theorem ContinuousAt.arsinh {X : Type u_1} [TopologicalSpace X] {f : X} {a : X} (h : ContinuousAt f a) :
        ContinuousAt (fun (x : X) => (f x).arsinh) a
        theorem ContinuousWithinAt.arsinh {X : Type u_1} [TopologicalSpace X] {f : X} {s : Set X} {a : X} (h : ContinuousWithinAt f s a) :
        ContinuousWithinAt (fun (x : X) => (f x).arsinh) s a
        theorem ContinuousOn.arsinh {X : Type u_1} [TopologicalSpace X] {f : X} {s : Set X} (h : ContinuousOn f s) :
        ContinuousOn (fun (x : X) => (f x).arsinh) s
        theorem Continuous.arsinh {X : Type u_1} [TopologicalSpace X] {f : X} (h : Continuous f) :
        Continuous fun (x : X) => (f x).arsinh
        theorem HasStrictFDerivAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {a : E} {f' : E →L[] } (hf : HasStrictFDerivAt f f' a) :
        HasStrictFDerivAt (fun (x : E) => (f x).arsinh) ((1 + f a ^ 2).sqrt⁻¹ f') a
        theorem HasFDerivAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {a : E} {f' : E →L[] } (hf : HasFDerivAt f f' a) :
        HasFDerivAt (fun (x : E) => (f x).arsinh) ((1 + f a ^ 2).sqrt⁻¹ f') a
        theorem HasFDerivWithinAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {a : E} {f' : E →L[] } (hf : HasFDerivWithinAt f f' s a) :
        HasFDerivWithinAt (fun (x : E) => (f x).arsinh) ((1 + f a ^ 2).sqrt⁻¹ f') s a
        theorem DifferentiableAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {a : E} (h : DifferentiableAt f a) :
        DifferentiableAt (fun (x : E) => (f x).arsinh) a
        theorem DifferentiableWithinAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {a : E} (h : DifferentiableWithinAt f s a) :
        DifferentiableWithinAt (fun (x : E) => (f x).arsinh) s a
        theorem DifferentiableOn.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} (h : DifferentiableOn f s) :
        DifferentiableOn (fun (x : E) => (f x).arsinh) s
        theorem Differentiable.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} (h : Differentiable f) :
        Differentiable fun (x : E) => (f x).arsinh
        theorem ContDiffAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {a : E} {n : ℕ∞} (h : ContDiffAt n f a) :
        ContDiffAt n (fun (x : E) => (f x).arsinh) a
        theorem ContDiffWithinAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {a : E} {n : ℕ∞} (h : ContDiffWithinAt n f s a) :
        ContDiffWithinAt n (fun (x : E) => (f x).arsinh) s a
        theorem ContDiff.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {n : ℕ∞} (h : ContDiff n f) :
        ContDiff n fun (x : E) => (f x).arsinh
        theorem ContDiffOn.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {n : ℕ∞} (h : ContDiffOn n f s) :
        ContDiffOn n (fun (x : E) => (f x).arsinh) s
        theorem HasStrictDerivAt.arsinh {f : } {a : } {f' : } (hf : HasStrictDerivAt f f' a) :
        HasStrictDerivAt (fun (x : ) => (f x).arsinh) ((1 + f a ^ 2).sqrt⁻¹ f') a
        theorem HasDerivAt.arsinh {f : } {a : } {f' : } (hf : HasDerivAt f f' a) :
        HasDerivAt (fun (x : ) => (f x).arsinh) ((1 + f a ^ 2).sqrt⁻¹ f') a
        theorem HasDerivWithinAt.arsinh {f : } {s : Set } {a : } {f' : } (hf : HasDerivWithinAt f f' s a) :
        HasDerivWithinAt (fun (x : ) => (f x).arsinh) ((1 + f a ^ 2).sqrt⁻¹ f') s a