The positive (and negative) parts of a selfadjoint element in a C⋆-algebra #
This file defines the positive and negative parts of a selfadjoint element in a C⋆-algebra via the continuous functional calculus and develops the basic API, including the uniqueness of the positive and negative parts.
noncomputable instance
CStarAlgebra.instPosPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
:
PosPart A
noncomputable instance
CStarAlgebra.instNegPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
:
NegPart A
theorem
CFC.posPart_def
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
theorem
CFC.negPart_def
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
@[simp]
theorem
CFC.posPart_zero
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
:
@[simp]
theorem
CFC.negPart_zero
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
:
@[simp]
theorem
CFC.posPart_mul_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
@[simp]
theorem
CFC.negPart_mul_posPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
theorem
CFC.posPart_sub_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
@[simp]
theorem
CFC.posPart_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(a : A)
:
@[simp]
theorem
CFC.negPart_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(a : A)
:
@[simp]
theorem
CFC.posPart_smul
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[StarModule ℝ A]
{r : NNReal}
{a : A}
:
@[simp]
theorem
CFC.negPart_smul
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[StarModule ℝ A]
{r : NNReal}
{a : A}
:
theorem
CFC.posPart_smul_of_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[StarModule ℝ A]
{r : ℝ}
(hr : 0 ≤ r)
{a : A}
:
theorem
CFC.posPart_smul_of_nonpos
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[StarModule ℝ A]
{r : ℝ}
(hr : r ≤ 0)
{a : A}
:
theorem
CFC.negPart_smul_of_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[StarModule ℝ A]
{r : ℝ}
(hr : 0 ≤ r)
{a : A}
:
theorem
CFC.negPart_smul_of_nonpos
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[StarModule ℝ A]
{r : ℝ}
(hr : r ≤ 0)
{a : A}
:
theorem
CFC.posPart_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
(a : A)
:
theorem
CFC.negPart_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
(a : A)
:
theorem
CFC.posPart_eq_of_eq_sub_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a b : A}
(hab : a = b - a⁻)
(hb : 0 ≤ b := by cfc_tac)
:
theorem
CFC.negPart_eq_of_eq_PosPart_sub
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a c : A}
(hac : a = a⁺ - c)
(hc : 0 ≤ c := by cfc_tac)
:
theorem
CFC.le_posPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.neg_negPart_le
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.posPart_eq_self
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
@[deprecated CFC.posPart_eq_self]
theorem
CFC.eq_posPart_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
theorem
CFC.negPart_eq_zero_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.negPart_eq_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
@[deprecated CFC.negPart_eq_neg]
theorem
CFC.eq_negPart_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
theorem
CFC.posPart_eq_zero_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.posPart_negPart_unique
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[TopologicalRing A]
[T2Space A]
{a b c : A}
(habc : a = b - c)
(hbc : b * c = 0)
(hb : 0 ≤ b := by cfc_tac)
(hc : 0 ≤ c := by cfc_tac)
:
The positive and negative parts of a selfadjoint element a
are unique. That is, if
a = b - c
is the difference of nonnegative elements whose product is zero, then these are
precisely a⁺
and a⁻
.
@[simp]
theorem
CFC.posPart_one
{A : Type u_1}
[Ring A]
[Algebra ℝ A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
:
@[simp]
theorem
CFC.negPart_one
{A : Type u_1}
[Ring A]
[Algebra ℝ A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
:
@[simp]
theorem
CFC.posPart_algebraMap
{A : Type u_1}
[Ring A]
[Algebra ℝ A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(r : ℝ)
:
((algebraMap ℝ A) r)⁺ = (algebraMap ℝ A) r⁺
@[simp]
theorem
CFC.negPart_algebraMap
{A : Type u_1}
[Ring A]
[Algebra ℝ A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(r : ℝ)
:
((algebraMap ℝ A) r)⁻ = (algebraMap ℝ A) r⁻
@[simp]
theorem
CFC.posPart_algebraMap_nnreal
{A : Type u_1}
[Ring A]
[Algebra ℝ A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(r : NNReal)
:
((algebraMap NNReal A) r)⁺ = (algebraMap NNReal A) r
@[simp]
theorem
CFC.posPart_natCast
{A : Type u_1}
[Ring A]
[Algebra ℝ A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(n : ℕ)
:
theorem
CStarAlgebra.linear_combination_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
[StarRing A]
[TopologicalSpace A]
[StarModule ℂ A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
(x : A)
:
theorem
CStarAlgebra.span_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
[StarRing A]
[TopologicalSpace A]
[StarModule ℂ A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
:
Submodule.span ℂ {a : A | 0 ≤ a} = ⊤
A C⋆-algebra is spanned by its nonnegative elements.