Documentation

Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.PosPart

The positive (and negative) parts of a selfadjoint element in a C⋆-algebra #

This file defines the positive and negative parts of a selfadjoint element in a C⋆-algebra via the continuous functional calculus and develops the basic API, including the uniqueness of the positive and negative parts.

Equations
  • CStarAlgebra.instPosPart = { posPart := cfcₙ fun (x : ) => x }
Equations
  • CStarAlgebra.instNegPart = { negPart := cfcₙ fun (x : ) => x }
theorem CFC.posPart_def {A : Type u_1} [NonUnitalRing A] [Module A] [SMulCommClass A A] [IsScalarTower A A] [StarRing A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus IsSelfAdjoint] (a : A) :
a = cfcₙ (fun (x : ) => x) a
theorem CFC.negPart_def {A : Type u_1} [NonUnitalRing A] [Module A] [SMulCommClass A A] [IsScalarTower A A] [StarRing A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus IsSelfAdjoint] (a : A) :
a = cfcₙ (fun (x : ) => x) a
theorem CFC.posPart_sub_negPart {A : Type u_1} [NonUnitalRing A] [Module A] [SMulCommClass A A] [IsScalarTower A A] [StarRing A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus IsSelfAdjoint] (a : A) (ha : IsSelfAdjoint a := by cfc_tac) :
a - a = a
theorem CFC.posPart_negPart_unique {A : Type u_1} [NonUnitalRing A] [Module A] [SMulCommClass A A] [IsScalarTower A A] [StarRing A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus IsSelfAdjoint] [PartialOrder A] [StarOrderedRing A] [NonnegSpectrumClass A] [UniqueNonUnitalContinuousFunctionalCalculus A] [TopologicalRing A] [T2Space A] {a b c : A} (habc : a = b - c) (hbc : b * c = 0) (hb : 0 b := by cfc_tac) (hc : 0 c := by cfc_tac) :
b = a c = a

The positive and negative parts of a selfadjoint element a are unique. That is, if a = b - c is the difference of nonnegative elements whose product is zero, then these are precisely a⁺ and a⁻.