Documentation

Mathlib.Analysis.SpecialFunctions.Log.RpowTendsto

The logarithm as a limit of powers #

This file shows that the logarithm can be expressed as a limit of powers, namely that p⁻¹ * (x ^ p - 1) tends to log x as p tends to zero for positive x.

Main declarations #

theorem Real.norm_inv_mul_rpow_sub_one_sub_log_le {p x : } (p_pos : 0 < p) (x_pos : 0 < x) (hx : p * log x 1) :
p⁻¹ * (x ^ p - 1) - log x p * log x ^ 2
theorem tendsto_rpow_sub_one_log {x : } (hx : 0 < x) :
Filter.Tendsto (fun (p : ) => p⁻¹ * (x ^ p - 1)) (nhdsWithin 0 (Set.Ioi 0)) (nhds (Real.log x))