Documentation

Mathlib.Analysis.SpecialFunctions.Pochhammer

Pochhammer polynomials #

This file proves analysis theorems for Pochhammer polynomials.

Main statements #

theorem differentiable_descPochhammer_eval {n : } {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] :
Differentiable 𝕜 fun (a : 𝕜) => Polynomial.eval a (descPochhammer 𝕜 n)

descPochhammer 𝕜 n is differentiable.

theorem continuous_descPochhammer_eval {n : } {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] :
Continuous fun (a : 𝕜) => Polynomial.eval a (descPochhammer 𝕜 n)

descPochhammer 𝕜 n is continuous.

theorem deriv_descPochhammer_eval_eq_sum_prod_range_erase {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] (n : ) (k : 𝕜) :
deriv (fun (a : 𝕜) => Polynomial.eval a (descPochhammer 𝕜 n)) k = iFinset.range n, j(Finset.range n).erase i, (k - j)

deriv (descPochhammer ℝ n) is monotone on (n-1, ∞).

descPochhammer ℝ n is convex on [n-1, ∞).

theorem descPochhammer_eval_le_sum_descFactorial {n : } (hn : n 0) {ι : Type u_2} {t : Finset ι} (p : ι) (w : ι) (h₀ : it, 0 w i) (h₁ : it, w i = 1) (h_avg : n - 1 it, w i * (p i)) :
Polynomial.eval (∑ it, w i * (p i)) (descPochhammer n) it, w i * ((p i).descFactorial n)

Special case of Jensen's inequality for Nat.descFactorial.

theorem descPochhammer_eval_div_factorial_le_sum_choose {n : } (hn : n 0) {ι : Type u_2} {t : Finset ι} (p : ι) (w : ι) (h₀ : it, 0 w i) (h₁ : it, w i = 1) (h_avg : n - 1 it, w i * (p i)) :
Polynomial.eval (∑ it, w i * (p i)) (descPochhammer n) / n.factorial it, w i * ((p i).choose n)

Special case of Jensen's inequality for Nat.choose.