Documentation

Mathlib.Analysis.SumIntegralComparisons

Comparing sums and integrals #

Summary #

It is often the case that error terms in analysis can be computed by comparing an infinite sum to the improper integral of an antitone function. This file will eventually enable that.

At the moment it contains several lemmas in this direction, for antitone or monotone functions (or products of antitone and monotone functions), formulated for sums on range i or Ico a b.

TODO: Add more lemmas to the API to directly address limiting issues

Main Results #

Tags #

analysis, comparison, asymptotics

theorem sum_Ico_le_integral_of_le {a b : } {f g : } (hab : a b) (h : iSet.Ico a b, xSet.Ico i (i + 1), f i g x) (hg : MeasureTheory.IntegrableOn g (Set.Ico a b) MeasureTheory.volume) :
iFinset.Ico a b, f i (x : ) in a..b, g x
theorem integral_le_sum_Ico_of_le {a b : } {f g : } (hab : a b) (h : iSet.Ico a b, xSet.Ico i (i + 1), g x f i) (hg : MeasureTheory.IntegrableOn g (Set.Ico a b) MeasureTheory.volume) :
(x : ) in a..b, g x iFinset.Ico a b, f i
theorem AntitoneOn.integral_le_sum {x₀ : } {a : } {f : } (hf : AntitoneOn f (Set.Icc x₀ (x₀ + a))) :
(x : ) in x₀..x₀ + a, f x iFinset.range a, f (x₀ + i)
theorem AntitoneOn.integral_le_sum_Ico {a b : } {f : } (hab : a b) (hf : AntitoneOn f (Set.Icc a b)) :
(x : ) in a..b, f x xFinset.Ico a b, f x
theorem AntitoneOn.sum_le_integral {x₀ : } {a : } {f : } (hf : AntitoneOn f (Set.Icc x₀ (x₀ + a))) :
iFinset.range a, f (x₀ + (i + 1)) (x : ) in x₀..x₀ + a, f x
theorem AntitoneOn.sum_le_integral_Ico {a b : } {f : } (hab : a b) (hf : AntitoneOn f (Set.Icc a b)) :
iFinset.Ico a b, f (i + 1) (x : ) in a..b, f x
theorem MonotoneOn.sum_le_integral {x₀ : } {a : } {f : } (hf : MonotoneOn f (Set.Icc x₀ (x₀ + a))) :
iFinset.range a, f (x₀ + i) (x : ) in x₀..x₀ + a, f x
theorem MonotoneOn.sum_le_integral_Ico {a b : } {f : } (hab : a b) (hf : MonotoneOn f (Set.Icc a b)) :
xFinset.Ico a b, f x (x : ) in a..b, f x
theorem MonotoneOn.integral_le_sum {x₀ : } {a : } {f : } (hf : MonotoneOn f (Set.Icc x₀ (x₀ + a))) :
(x : ) in x₀..x₀ + a, f x iFinset.range a, f (x₀ + (i + 1))
theorem MonotoneOn.integral_le_sum_Ico {a b : } {f : } (hab : a b) (hf : MonotoneOn f (Set.Icc a b)) :
(x : ) in a..b, f x iFinset.Ico a b, f (i + 1)
theorem sum_mul_Ico_le_integral_of_monotone_antitone {a b : } {f g : } (hab : a b) (hf : MonotoneOn f (Set.Icc a b)) (hg : AntitoneOn g (Set.Icc (a - 1) (b - 1))) (fpos : 0 f a) (gpos : 0 g (b - 1)) :
iFinset.Ico a b, f i * g i (x : ) in a..b, f x * g (x - 1)
theorem integral_le_sum_mul_Ico_of_antitone_monotone {a b : } {f g : } (hab : a b) (hf : AntitoneOn f (Set.Icc a b)) (hg : MonotoneOn g (Set.Icc (a - 1) (b - 1))) (fpos : 0 f b) (gpos : 0 g (a - 1)) :
(x : ) in a..b, f x * g (x - 1) iFinset.Ico a b, f i * g i