Epimorphisms with an injective kernel #
In this file, we define the class of morphisms epiWithInjectiveKernel
in an
abelian category. We show that this property of morphisms is multiplicative.
This shall be used in the file Mathlib.Algebra.Homology.Factorizations.Basic
in
order to define morphisms of cochain complexes which satisfy this property
degreewise.
def
CategoryTheory.Abelian.epiWithInjectiveKernel
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
:
The class of morphisms in an abelian category that are epimorphisms and have an injective kernel.
Equations
Instances For
theorem
CategoryTheory.Abelian.epiWithInjectiveKernel_iff
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
{X Y : C}
(g : X ⟶ Y)
:
CategoryTheory.Abelian.epiWithInjectiveKernel g ↔ ∃ (I : C) (_ : CategoryTheory.Injective I) (f : I ⟶ X) (w : CategoryTheory.CategoryStruct.comp f g = 0),
Nonempty (CategoryTheory.ShortComplex.mk f g w).Splitting
A morphism g : X ⟶ Y
is epi with an injective kernel iff there exists a morphism
f : I ⟶ X
with I
injective such that f ≫ g = 0
and
the short complex I ⟶ X ⟶ Y
has a splitting.
theorem
CategoryTheory.Abelian.epiWithInjectiveKernel_of_iso
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
{X Y : C}
(f : X ⟶ Y)
[CategoryTheory.IsIso f]
:
instance
CategoryTheory.Abelian.instIsMultiplicativeEpiWithInjectiveKernel
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Abelian C]
:
CategoryTheory.Abelian.epiWithInjectiveKernel.IsMultiplicative