Documentation

Mathlib.CategoryTheory.Abelian.Exact

Exact sequences in abelian categories #

In an abelian category, we get several interesting results related to exactness which are not true in more general settings.

Main results #

In an abelian category, a short complex S is exact iff imageSubobject S.f = kernelSubobject S.g.

If (f, g) is exact, then Abelian.image.ι S.f is a kernel of S.g.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    If (f, g) is exact, then Abelian.coimage.π g is a cokernel of f.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.ShortComplex.exact_kernel {C : Type u₁} [Category C] [Abelian C] {X Y : C} (f : Quiver.Hom X Y) :
      { X₁ := Limits.kernel f, X₂ := X, X₃ := Y, f := Limits.kernel.ι f, g := f, zero := }.Exact
      theorem CategoryTheory.ShortComplex.exact_cokernel {C : Type u₁} [Category C] [Abelian C] {X Y : C} (f : Quiver.Hom X Y) :
      { X₁ := X, X₂ := Y, X₃ := Limits.cokernel f, f := f, g := Limits.cokernel.π f, zero := }.Exact
      theorem CategoryTheory.ShortComplex.exact_iff_exact_image_ι {C : Type u₁} [Category C] [Abelian C] (S : ShortComplex C) :
      Iff S.Exact { X₁ := Abelian.image S.f, X₂ := S.X₂, X₃ := S.X₃, f := Abelian.image.ι S.f, g := S.g, zero := }.Exact
      theorem CategoryTheory.ShortComplex.exact_iff_exact_coimage_π {C : Type u₁} [Category C] [Abelian C] (S : ShortComplex C) :
      Iff S.Exact { X₁ := S.X₁, X₂ := S.X₂, X₃ := Abelian.coimage S.g, f := S.f, g := Abelian.coimage.π S.g, zero := }.Exact
      theorem CategoryTheory.Abelian.tfae_mono {C : Type u₁} [Category C] [Abelian C] {X Y : C} (f : Quiver.Hom X Y) (Z : C) :
      (List.cons (Mono f) (List.cons (Eq (Limits.kernel.ι f) 0) (List.cons { X₁ := Z, X₂ := X, X₃ := Y, f := 0, g := f, zero := }.Exact List.nil))).TFAE
      theorem CategoryTheory.Abelian.tfae_epi {C : Type u₁} [Category C] [Abelian C] {X Y : C} (f : Quiver.Hom X Y) (Z : C) :
      (List.cons (Epi f) (List.cons (Eq (Limits.cokernel.π f) 0) (List.cons { X₁ := X, X₂ := Y, X₃ := Z, f := f, g := 0, zero := }.Exact List.nil))).TFAE

      A functor which preserves exactness preserves monomorphisms.

      A functor which preserves exactness preserves epimorphisms.

      theorem CategoryTheory.Functor.preservesHomology_of_map_exact {A : Type u₁} {B : Type u₂} [Category A] [Category B] [Abelian A] [Abelian B] (L : Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : ShortComplex A), S.Exact(S.map L).Exact) :

      A functor which preserves the exactness of short complexes preserves homology.

      A functor preserving zero morphisms, monos, and cokernels preserves homology.

      A functor preserving zero morphisms, epis, and kernels preserves homology.