Documentation

Mathlib.CategoryTheory.Abelian.Exact

Exact sequences in abelian categories #

In an abelian category, we get several interesting results related to exactness which are not true in more general settings.

Main results #

In an abelian category, a short complex S is exact iff imageSubobject S.f = kernelSubobject S.g.

If (f, g) is exact, then Abelian.image.ι S.f is a kernel of S.g.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    If (f, g) is exact, then image.ι f is a kernel of g.

    Equations
    Instances For

      If (f, g) is exact, then Abelian.coimage.π g is a cokernel of f.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        If (f, g) is exact, then factorThruImage g is a cokernel of f.

        Equations
        Instances For
          theorem CategoryTheory.ShortComplex.exact_kernel {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) :
          (mk (Limits.kernel.ι f) f ).Exact
          theorem CategoryTheory.ShortComplex.exact_cokernel {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) :
          (mk f (Limits.cokernel.π f) ).Exact
          theorem CategoryTheory.Abelian.tfae_mono {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) (Z : C) :
          [Mono f, Limits.kernel.ι f = 0, (ShortComplex.mk 0 f ).Exact].TFAE
          theorem CategoryTheory.Abelian.tfae_epi {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {X Y : C} (f : X Y) (Z : C) :
          [Epi f, Limits.cokernel.π f = 0, (ShortComplex.mk f 0 ).Exact].TFAE
          theorem CategoryTheory.Functor.reflects_exact_of_faithful {C : Type u₁} [Category.{v₁, u₁} C] [Abelian C] {D : Type u₂} [Category.{v₂, u₂} D] [Abelian D] (F : Functor C D) [F.PreservesZeroMorphisms] [F.Faithful] (S : ShortComplex C) (hS : (S.map F).Exact) :
          S.Exact
          @[deprecated CategoryTheory.ShortComplex.Exact.map (since := "2024-07-09")]
          theorem CategoryTheory.Functor.CategoryTheory.Functor.map_exact {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] [Limits.HasZeroMorphisms D] {S : ShortComplex C} (h : S.Exact) (F : Functor C D) [F.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] :
          (S.map F).Exact

          Alias of CategoryTheory.ShortComplex.Exact.map.

          theorem CategoryTheory.Functor.preservesMonomorphisms_of_map_exact {A : Type u₁} {B : Type u₂} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Abelian A] [Abelian B] (L : Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : ShortComplex A), S.Exact(S.map L).Exact) :
          L.PreservesMonomorphisms

          A functor which preserves exactness preserves monomorphisms.

          theorem CategoryTheory.Functor.preservesEpimorphisms_of_map_exact {A : Type u₁} {B : Type u₂} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Abelian A] [Abelian B] (L : Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : ShortComplex A), S.Exact(S.map L).Exact) :
          L.PreservesEpimorphisms

          A functor which preserves exactness preserves epimorphisms.

          theorem CategoryTheory.Functor.preservesHomology_of_map_exact {A : Type u₁} {B : Type u₂} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Abelian A] [Abelian B] (L : Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : ShortComplex A), S.Exact(S.map L).Exact) :
          L.PreservesHomology

          A functor which preserves the exactness of short complexes preserves homology.

          @[deprecated CategoryTheory.Functor.PreservesHomology.preservesKernels (since := "2024-07-09")]
          theorem CategoryTheory.Functor.preservesKernelsOfMapExact {C : Type u_1} {D : Type u_2} {inst✝ : Category.{u_3, u_1} C} {inst✝¹ : Category.{u_4, u_2} D} {inst✝² : Limits.HasZeroMorphisms C} {inst✝³ : Limits.HasZeroMorphisms D} {F : Functor C D} {inst✝⁴ : F.PreservesZeroMorphisms} [self : F.PreservesHomology] ⦃X Y : C (f : X Y) :

          Alias of CategoryTheory.Functor.PreservesHomology.preservesKernels.


          the functor preserves kernels

          @[deprecated CategoryTheory.Functor.PreservesHomology.preservesCokernels (since := "2024-07-09")]
          theorem CategoryTheory.Functor.preservesCokernelsOfMapExact {C : Type u_1} {D : Type u_2} {inst✝ : Category.{u_3, u_1} C} {inst✝¹ : Category.{u_4, u_2} D} {inst✝² : Limits.HasZeroMorphisms C} {inst✝³ : Limits.HasZeroMorphisms D} {F : Functor C D} {inst✝⁴ : F.PreservesZeroMorphisms} [self : F.PreservesHomology] ⦃X Y : C (f : X Y) :

          Alias of CategoryTheory.Functor.PreservesHomology.preservesCokernels.


          the functor preserves cokernels

          theorem CategoryTheory.Functor.preservesHomology_of_preservesMonos_and_cokernels {A : Type u₁} {B : Type u₂} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Abelian A] [Abelian B] (L : Functor A B) [L.PreservesZeroMorphisms] [L.PreservesMonomorphisms] [∀ {X Y : A} (f : X Y), Limits.PreservesColimit (Limits.parallelPair f 0) L] :
          L.PreservesHomology

          A functor preserving zero morphisms, monos, and cokernels preserves homology.

          theorem CategoryTheory.Functor.preservesHomology_of_preservesEpis_and_kernels {A : Type u₁} {B : Type u₂} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Abelian A] [Abelian B] (L : Functor A B) [L.PreservesZeroMorphisms] [L.PreservesEpimorphisms] [∀ {X Y : A} (f : X Y), Limits.PreservesLimit (Limits.parallelPair f 0) L] :
          L.PreservesHomology

          A functor preserving zero morphisms, epis, and kernels preserves homology.